首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the context of a propagating surface of discontinuity in a thermomechanical medium, this brief communication establishes a relationship between the supplies of material momentum, linear momentum, energy and entropy. The relationship is equivalent to the jump condition in energy and is also framed in the context of a driving traction.   相似文献   

2.
A new failure theory based on the material configuration forces associated with the invariant M-integral is proposed to describe the content and evolution of the multi-defects localized in the body. The physical interpretation of the global M-integral is as the sum of the local energy release rate due to the self-similar expansion for each specific defect. It does provide an effective measure for the evaluation of damage level. It is found that the unique parameter of the M-integral cannot be used as a unified failure criterion to predict the damage evolution and the final failure due to the major obstacle that the critical value of the M-integral is not a problem-invariant constant and shows an apparent defect configuration-dependence. Consequently, a new failure parameter referred as the configurational damage parameter (abbreviated as Π-parameter) is proposed by the appropriate formulation via the M-integral, the remote uni-axial load, and the inner variable of the damaged area. A series of numerical examples are carried out to demonstrate that the critical value of Π-parameter is a material constant regardless of defect configurations. Furthermore, it is performed to validate the applicability of the Π-parameter as a failure criterion to predict the final failure of the locally damaged materials. Finally, a protocol of experimental measurement of the Π-parameter is proposed by method of digital image correlation to facilitate the wide application of the new failure criterion. It is concluded that the present failure theory via the configurational forces associated with the M-integral provides some outside variable features and has the advantage of predicting the structural integrity of damaged materials containing the locally distributed defects.  相似文献   

3.
4.
The energy flux integral and the energy-momentum tensor for studying the crack driving force in electroelastodynamic fracture are formulated within the framework of the nonlinear theory of coupled electric, thermal and mechanical fields based on fundamental principles of thermodynamics. This formulation lays a foundation for in-depth understanding of the fracture behavior of piezoelectric materials. Remarkably, the dynamic energy release rate thus obtained has an odd dependence on the electric displacement intensity factor for steady-state propagation of a conventional (unelectroded) crack with exact, electrically permeable, semi-permeable, or impermeable crack surface condition, which is in agreement with experimental evidence.  相似文献   

5.
A unified potential-based cohesive model of mixed-mode fracture   总被引:1,自引:0,他引:1  
A generalized potential-based constitutive model for mixed-mode cohesive fracture is presented in conjunction with physical parameters such as fracture energy, cohesive strength and shape of cohesive interactions. It characterizes different fracture energies in each fracture mode, and can be applied to various material failure behavior (e.g. quasi-brittle). The unified potential leads to both intrinsic (with initial slope indicators to control elastic behavior) and extrinsic cohesive zone models. Path dependence of work-of-separation is investigated with respect to proportional and non-proportional paths—this investigation demonstrates consistency of the cohesive constitutive model. The potential-based model is verified by simulating a mixed-mode bending test. The actual potential is named PPR (Park-Paulino-Roesler), after the first initials of the authors’ last names.  相似文献   

6.
The area under the load–displacement softening curve gives the total external work on the test specimen and not the fracture energy. The fracture energy follows from half this area that is equal to the critical strain energy release rate at the first crack increment. For wood this is correctly applied for mode II. For mode I however, as for other materials, the total area is wrongly regarded, a factor 2 is too high. In some applications, based on crack increment cycles, the error is even a multiple of this factor 2. On the other hand, the measurements at softening may show an apparent decrease of the specific fracture energy that can be explained by a small crack joining mechanism when the ultimate state of the ligament of the test specimen is reached. Post fracture behaviour is thus not comparable with the behaviour of macro crack initiation.It is further shown, by the kinetics of the process, that the irreversible work of an ultimate loading cycle is proportional to the activation energy of the fracture process and not to the driving force of the process. This explains why the crack velocity decreases with the increase of this irreversible work and increases with the stress intensity increase.The fracture energy is a function of the Griffith strength and is thus related to the effective width of the test specimen and not to the ligament length. This also has to be corrected. Based on the derivation of the softening curve, the reported fracture toughness of 720 kN m−1.5 of double-edge notched tests is corrected to 330 kN m−1.5 and the value of 467 kN m−1.5, based on the fracture energy, of the compact tension tests, is also corrected to the right value of 330 kN m−1.5. A revision of published mode I data, based on the fracture energy obtained by the area of the softening curve, is thus necessary.  相似文献   

7.
From an engineering point of view, prediction of fatigue crack nucleation in automotive rubber parts is an essential prerequisite for the design of new components. We have derived a new predictor for fatigue crack nucleation in rubber. It is motivated by microscopic mechanisms induced by fatigue and developed in the framework of Configurational Mechanics. As the occurrence of macroscopic fatigue cracks is the consequence of the growth of pre-existing microscopic defects, the energy release rate of these flaws need to be quantified. It is shown that this microstructural evolution is governed by the smallest eigenvalue of the configurational (Eshelby) stress tensor. Indeed, this quantity appears to be a relevant multiaxial fatigue predictor under proportional loading conditions. Then, its generalization to non-proportional multiaxial fatigue problems is derived. Results show that the present predictor, which is related to the previously published predictors, is capable to unify multiaxial fatigue data.  相似文献   

8.
9.
The maximum energy release rate criterion, i.e., G max criterion, is commonly used for crack propagation analysis. This fracture criterion is based on the elastic macroscopic strength of materials. In the present investigation, however, the G max criterion has been modified in order to accommodate the consideration of plastic strain energy. This modified criterion is extended to study the fatigue crack growth characteristics of mixed-mode cracks. To predict crack propagation due to fatigue loads, a new elasto–plastic energy model is presented. This new model includes the effects of material properties such as strain hardening exponent n, yield strength σ y , and fracture toughness and stress intensity factor ranges. The results obtained are compared with those obtained using the commonly employed crack growth law and the experimental data.  相似文献   

10.
In order to study the adhesion mechanism of a viscoelastic thin-film on a substrate, peeling experiment of a viscoelastic polyvinylchloride (PVC) thin-film on a rigid substrate (glass) is carried out. The effects of peeling rate, peeling angle, film thickness, surface roughness and the interfacial adhesive on the peel-off force are considered. It is found that both the viscoelastic properties of the film and the interfacial adhesive contribute to the rate-dependent peel-off force. For a fixed peeling rate, the peel-off force decreases with the increasing peeling angle. Increasing film thickness or substrate roughness leads to an increase of the peel-off force. Viscoelastic energy release rate in the present experiment can be further predicted by adopting a recently published theoretical model. It is shown that the energy release rate increases with the increase of peeling rates or peeling angles. The results in the present paper should be helpful for understanding the adhesion mechanism of a viscoelastic thin-film.  相似文献   

11.
12.
The paper presents a fracture model for ferroelectric materials taking into account the hysteretic domain switching processes near to the tip of a macroscopic crack. The model is based on the balance of energy supplied by the driving forces, on the one hand, and the total of energies either dissipated by domain switching, stored in the crack wake region or consumed by the formation of new fracture surface, on the other hand. An internal variable theory describes the nonlinear coupled electromechanical material response within the framework of a three-dimensional continuum model. For simplicity, the complex orientation distribution function of domains in a polycrystalline ceramic is approximated by only six representative space orientations. The theory predicts certain dimensionless material parameter combinations which govern the change of fracture toughness under the application of different mechanical and electrical loadings. A comparison with data available in the literature for barium titanate ceramics yields a reasonable coincidence.  相似文献   

13.
Shape memory materials (SMM) are receiving increasing attention for their use in applications that exploit their dynamic behavior. A thermomechanical model for devices with pseudoelastic behavior has been proposed in previous works [11] (Bernardini and Pence, 2005) [15] (Bernardini and Rega, 2005). The model takes into account several aspects of SMM behavior by means of seven model parameters.In this paper the effect of each parameter on the non-isothermal rate-dependent behavior of the device is studied, by paying particular attention to the effect of the thermomechanical coupling. Some overall synthetic indicators of the behavior of the shape memory device are defined in terms of the model parameters. By evaluating such indicators, a lot of information about the mechanical, thermal and thermomechanical effects on the device behavior can be gained before computing explicitly the response of the shape memory oscillator.The present work may provide a guide for the proper utilization of the model for the investigation of the dynamic response.  相似文献   

14.
Abstract

In this paper we study the elasticity problem of a cylindrically anisotropic, elastic medium bounded by two axisymmetric cylindrical surfaces subjected to normal piessures (plane strain). The material of the structure is orthotropic with cylindrical anisotropy and, in addition, is continuously inhomogeneous with mechanical properties varying along the radius. General solutions in terms of Whittaker functions are presented. The results obtained by St. Venant for a homogeneous cylindrically anisotropic medium can be deduced from the general solutions. The problem of a solid cylinder of the same medium under the external pressure is also solved as a particular case of the above problem. Problems of the type covered in this paper are encountered in nuclear reactor design.  相似文献   

15.
The possibility of rock joint formation from discontinuities which originate in poorly lithified sediments is presented. The mechanism for the development of these discontinuities along the maximum compressive stress T max is discussed and quantitatively investigated. Micro-defects (holes, cavities) may exist in sediment due to non-ideal packing. It is shown that in certain situations, a physically warranted tendency to reduce the total energy of the system splits into two separate holes which move away relative to material particles (grains) along the T max axis. The trace left by the moving hole is interpreted as a macro-discontinuity evolving with time into the closed mode I macro-crack. Some justifications for the mechanism are presented.  相似文献   

16.
45钢的J-C损伤失效参量研究   总被引:8,自引:1,他引:7  
为了在结构碰撞效应的有限元分析中描述材料行为,通过开展45钢在不同应力状态和温度下的准静态材料力学性能实验及拉伸SHB实验,考察了应力状态三轴度、温度和应变率对材料失效应变的影响。由实验数据得到了Johnson-Cook失效模型参量,并通过出现失效的Taylor撞击实验和数值模拟进行了一定的验证,表明模型描述与实验结果的趋势一致。  相似文献   

17.
High-speed holographic microscopy is applied to take three successive photographs of fast propagating cracks in Homalite 100 or in Araldite B at the moment of bifurcation. Crack speed at bifurcation is about 540 m/s on Homalite 100, and about 450 m/s on Araldite B. From the photographs, crack speeds immediately before and after bifurcation are obtained, and it is found that discontinuous change of crack speed does not exist at the moment of bifurcation in the case of Homalite 100, but exists in the case of Araldite B. From the photographs, crack opening displacement (COD) is also measured along the cracks as a function of distance r from the crack tips. The measurement results show that the CODs are proportional to √r before bifurcation. After bifurcation, the CODs of mother cracks are proportional to √r, though the CODs of branch cracks are not always proportional to √r. The energy release rate is obtained from the measured CODs, and it is found that energy release rate is continuous at bifurcation point in both cases of Homalite 100 and Araldite B. Energy flux that shows the energy flow toward a crack tip is also obtained.  相似文献   

18.
为了研究铜膜/有机玻璃结构的界面性能,首先对沉积在有机玻璃基底上300nm厚的铜膜进行了单轴压缩实验,部分区域的薄膜因屈曲而脱离基底。选择在膜/基粘接良好区域、膜/基脱粘区域分别进行等位移纳米压痕实验。利用膜/基粘接良好区域处硬度/弹性模量与压痕位移的关系来确定膜/基结构的临界脱粘位移。基于宏观力学中表征界面性能的能量法,利用两个区域等位移的塑性功差值来确定界面能量释放率。研究结果表明:当压痕位移约450nm时,膜/基结构开始出现界面脱粘,实验测得铜膜/有机玻璃结构的界面能量释放率值在6.81~10.32J/m2之间。  相似文献   

19.
集中力作用下铝合金材料内部柱状缺陷检测的研究   总被引:1,自引:0,他引:1  
倪凡  杨国标  李斌 《实验力学》2010,25(2):181-185
工程中,构件的内部会因为各种原因不可避免地存在各种损伤或缺陷。本文通过弹性力学理论给出含柱状缺陷的铝合金材料在受到集中力作用下的离面位移场。同时运用电子散斑干涉方法成功地测量出试件缺陷覆盖层在受到集中力情况下的离面位移。理论和实验结果对比表明,利用电子散斑干涉术技术能够精确地测量含缺陷材料表面的离面位移。此实验方法可以作为一种新型的探测物体内部缺陷所处的位置和大小的评估办法。  相似文献   

20.
扩展有限元法是基于常规有限元框架分析裂纹等不连续力学问题的一种有效数值方法,在常规的有限元位移表达式中,增加了能够反映位移不连续性的跳跃函数和渐进缝尖位移场函数来对不连续结构附近的节点自由度进行局部加强。本文介绍了扩展有限元法及粘聚力模型的基本原理,给出了基于扩展有限元法的地质聚合物混凝土断裂过程分析方法。分别采用四种不同的软化曲线对I型缺口地质聚合物混凝土梁从裂纹萌生、扩展直至断裂破坏的全过程进行了模拟,并基于双K断裂准则分析了其断裂韧性。结果表明,Petersson模型与试验结果吻合较好,最后基于模拟结果进一步揭示了断裂过程区的演化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号