首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds RbAuUSe3, CsAuUSe3, and RbAuUTe3 were synthesized at 1073 K from the reactions of U, Au, Q, and A2Q3 (A=Rb or Cs; Q=Se or Te). The compound CsAuUTe3 was synthesized at 1173 K from the reaction of U, Au, Te, and CsCl as a flux. These isostructural compounds crystallize in the KCuZrS3 structure type in space group Cmcm of the orthorhombic system. The structure consists of layers that contain nearly regular UQ6 octahedra and distorted AuQ4 tetrahedra. The infinite layers are separated by bicapped trigonal prismatic A cations. The magnetic behavior of RbAuUSe3 deviates significantly from Curie–Weiss behavior at low temperatures. For T>200 K, the values of the Curie constant C and the Weiss constant θp are 1.82(9) emu K mol−1 and −3.5(2)×102 K, respectively. The effective magnetic moment μeff is 3.81(9) μB. Formal oxidation states of A/Au/U/Q may be assigned as +1/+1/+4/−2, respectively.  相似文献   

2.
Transition metal trichalcogenides TaSe3, TaS3, NbSe3 and NbS3 were prepared under the reaction conditions of 2 GPa, 700°C, 30 min. NbSe3 is exactly the same as that obtained in the usual sealed-tube method. The other products are modifications of each usual phase. They have crystal structures very similar to that of NbSe3. The lattice parameters are a = 10.02Å, b = 3.48 Å, c = 15.56 Å, β = 109.6° for TaSe3, a = 9.52 Å, b = 3.35 Å, c = 14.92 Å, β = 110.0° for TaS3, and a = 9.68 Å, b = 3.37 Å, c = 14.83 Å, β = 109.9° for NbS3. In spite of the similarity in their crystal structures, these high-pressure phases show a variety of electrical transport properties. TaSe3 is a superconductor having Tc at 1.9 K. TaS3 is a semiconductor with two transitions at 200 and 250 K. NbS3 is a semiconductor with Ea = 180 MeV.  相似文献   

3.
The samples of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3 powders have been synthesized by the solid-state reaction methods at high temperature and their X-ray excited luminescent properties were investigated. All the studied materials show a broad emission band in the wavelength range of 300-550 nm with the peak centers at about 385 nm for YBa3B9O18 and LuBa3(BO3)3, 415 nm for α-YBa3(BO3)3 and 360 nm for LuBO3 powders, respectively. Even though those compounds have the different atomic structures, they have the common structural feature of each yttrium or lutetium ion bonded to six separate BO3 groups, i.e., octahedral RE(BO3)6 (RE=Lu or Y) moiety. This octahedral RE(BO3)6(RE=Lu or Y) moiety seems to be an important structural element for efficient X-ray excited luminescence of those compounds, as are the edge-sharing octahedral TaO6 chains for tantalate emission.  相似文献   

4.
A Bayard-Alpert (BA) gauge was used to determine apparent relative sensitivites Srel,X for O2, N2O, NO, NO2, NH3, CClF3 and CH3OH from gauge calibration measurements in the range 1.3×10–1 Pap1.3·10–3Pa. Nitrogen was used as a calibration standard.  相似文献   

5.
The thermal decompositon of a number of organo-bielemental vanadium compounds with the general formula Cp2V(ER3) (ER3 - GeEt3, SnEt3, CH2SiMe3, SeGeEt3) has been investigated in solids and in solution. The main decomposition products of Cp2V(SnEt3) are vanadocene and hexaethyldistannane. Et3GeH, Et3GeCp, Cp2V and CpV(C5H4GeEt3) are formed from Cp2V (GeET3) decomposition. Isolated CpV(C5H4GeEt3) is characterized by IR and mass spectra. The decomposition of Cp2V(CH2SiMe3) is accompanied by Me4Si, Cp2V and CpV-(C5H4CH2SiMe3) formation, the latter is identified from the mass spectrum. Triethylgermane, vanadocene, and a diselenide of vanadium are isolated on decomposition of Cp2V(SeGeEt3). Based upon the experimental data, mechanisms for the decompositon are proposed.  相似文献   

6.
The intercalation of lithium into various misfit layer chalcogenides of two different stoichiometries was performed by using n-butyl lithium on powders. The reaction was found to proceed topochemically, and a greater expansion in the c direction and higher lithium contents were observed in the lithiated phases with “MM2X5” approximate stoichiometries compared to “MMX3” stoichiometries. This behaviour difference is assigned to the different stacking sequence of the slices of the two sublattices formed by double layers of MX and sandwiches of MX2. Lattice distortions are induced during lithiation, leading to changes in the relative orientation of MS-type bilayers and to complete amorphization after long reaction times. The synthesis and partial characterization of a new misfit layer selenide of nominal composition “PbNb2Se5” is also reported. The value of the c-dimension (c = 37.37 Å) suggests a stacking sequence PbSe---NbSe2---NbSe2---PbSe---NbSe2---NbSe2, etc. This material becomes highly unstable on lithium intercalation and decomposes to its constituents after a few hours of lithiation.  相似文献   

7.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

8.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

9.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

10.
Within the first principle FLAPW-GGA band method we predict the structural, electronic, and magnetic properties of CaCNi3, SrCNi3, and BaCNi3 hypothetical antiperovskites. The results are discussed in comparison to the MgCNi3 isostructural superconductor.  相似文献   

11.
CF3SiH3 (I) has been obtained in ~90 % yield from the reaction of CF3SiF3 or CF3SiF2I with LiAlH4 in dibutyl ether at ?78°. (I) has been characterized by its 1H, 19F, 13C and 29Si NMR-, mass-, IR- and Raman spectra. It is thermally stable up to 180° and not attacked by O2, H2O and H3PO4, but cleaved by aqueous alkali. From a rovibrational analysis, Bo = 0.09769(2) cm?1 is deduced, and a long SiC bond, 1.95(1)Å, is predicted.  相似文献   

12.
Laser excitation of equilibrium vapor mixtures ErCl3(s)-ACl3(g) (A = Al, Ga, In) at 475–1100 K gives rise both to resonance fluorescence from the f → f Er3+ transitions of the Er-Cl-A vapor complexes, and to Raman scattering due to the vibrational modes of the ACl3 vapor. The laser-induced fluorescence from the 4F92, 4S32 and 2H112 states has been investigated at different temperatures and excitation.  相似文献   

13.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

14.
CsVI3 (a = 8.124(1) c = 6.774(1)Å,Z = 2, P63/mmc at 293 K) adopts the BaNiO3 structure. Three-dimensional magnetic ordering takes place atTc = 32(1)K. At 1.2 K the magnetic moment is 1.64(5) μB and it forms a 120° spin structure in the basal plane. RbVI3 (a = 13.863(2) c = 6.807(1) Å,Z = 6, P63cmor Pc1 at 293 K) and RbTiI3 (a = 14.024(3) Å,c = 6.796(2) Å,Z = 6, P63cm orPc1 at 293 K) adopt a distorted BaNiO3 structure, probably isostructural with KNiCl3.Tc of RbVI3 is 25(1) K. At 1.2 K, RbVI3 has a spin structure similar to the one of CsVI3 with a magnetic moment of 1.44(6) μB. RbTiI3 shows no magnetic ordering at 4.2 K. It is shown that a deviation from the 120° structure is expected for compounds with a distorted BaNiO3 structure such as RbVI3. The cell dimensions of CsTiI3 are reported.  相似文献   

15.
Two new thallium iodates have been synthesized, Tl(IO3)3 and Tl4(IO3)6 [Tl+3Tl3+(IO3)6], and characterized by single-crystal X-ray diffraction. Both materials were synthesized as phase-pure compounds through hydrothermal techniques using Tl2CO3 and HIO3 as reagents. The materials crystallize in space groups R-3 (Tl(IO3)3) and P-1 (Tl4(IO3)6). Although lone-pairs are observed for both I5+ and Tl+, electronic structure calculations indicate the lone-pair on I5+ is stereo-active, whereas the lone-pair on Tl+ is inert.  相似文献   

16.
The complex salts ((DienH3)[IrCl6](NO3) (I), (DienH3)[PtCl6](NO3) (II), and (DienH3)[IrCl6]0.5[PtCl6]0.5(NO3) (III) (where Dien is NH2(CH2)2NH(CH2)2NH2) were synthesized and characterized by elemental, X-ray diffraction, and thermal analyses and by electronic and IR spectroscopies. Solid solution of the composition Ir0.35Pt0.65 was obtained by decomposition of compound III in the atmosphere of hydrogen. Original Russian Text ? E.V. Makotchenko, I.A. Baidina, P.E. Plusnin, L.A. Sheludyakova, Yu.V. Shubin, S.V. Korenev, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 47–54.  相似文献   

17.
Compounds of the formulas BaTa0.8S3, BaNb0.8S3, and BaTa0.8Se3 were prepared by two methods: reaction of the elements in evacuated silica tubes and reaction of H2S over mixtures of BaCO3 and 0.4Ta(Nb)2O5. They have the hexagonal BaNiO3-type structure and are diamagnetic semiconductors. From the stoichiometries and properties we conclude that Nb and Ta are pentavalent.  相似文献   

18.
在密度泛函理论B3LYP/6-311++G(d,p)及MP2/6-311++G(d,p)水平上研究了单电子锂键复合物Y…Li—CH3[Y=CH3, CH2CH3, CH(CH3)2, C(CH3)3]的结构与性质. 结果表明, 三种单电子锂键复合物H3CH2C…Li—CH3(II), (H3C)2HC…Li—CH3(III)和(H3C)3C…Li—CH3(IV)单电子锂键强度依II(-26.7 kJ·mol-1)相似文献   

19.
刘春丽  周利  林瑞森 《化学学报》2007,65(10):998-1001
利用Anton Paar DMA 55精密数字密度计测定了L-丙氨酸在LiNO3, NaNO3, KNO3和NaClO4水溶液中的密度, 计算了L-丙氨酸的表观摩尔体积、极限偏摩尔体积、迁移偏摩尔体积、理论水化数和体积作用系数. 根据静电相互作用和结构水合作用模型讨论了阴离子和阳离子对迁移偏摩尔体积的影响. 结果表明, L-丙氨酸在四种含氧酸盐水溶液中的迁移体积均为正值, 并且随着盐浓度的增大而增大. L-丙氨酸两性离子端基和阴阳离子间的静电作用对迁移体积的贡献是主要的. 静电作用削弱了两性离子带电中心对周围水分子的电致收缩效应, 造成了理论水化数随溶液浓度的增加而减小. L-丙氨酸在NaNO3, KNO3和NaClO4水溶液中迁移体积的不同主要是由于静电作用的不同引起的, 在LiNO3水溶液中迁移体积的“反常”是由于结构相互作用的影响较大所致.  相似文献   

20.
Transition-metal trisulfides, TiS3, NbS3, and TaS3, with a quasi-one-dimensional structure are investigated by X-ray photoelectron spectroscopic (XPS) measurements to obtain information on the valence band structures. The band structures at the Fermi level of these compounds correspond well to their transport properties. A shoulder is observed at the top of the valence band in NbS3 and TaS3, suggesting that this band is made up of the metal dz2 electrons. The dz2 band is occupied in NbS3 and TaS2 and empty in TiS3. The characteristic features at the top of the valence band in NbS3 imply the occurrence of dz2 band separation, which leads to a semiconducting nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号