首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

2.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

3.
The imidoylamidinate platinum(II) compounds [Pt{NH=C(R)NC(Ph)NPh}2] (R = CH2Ph 2, p-ClC6H43, Ph 4) were prepared by the reaction of the appropriate trans-[PtCl2(RCN)2] with 4 equiv of the amidine PhC(NH)NHPh giving 2-4 and 2 equivs of the salt PhC(=NH)NHPh.HCl. We also synthesized, by the double alkylation of 4 with MeOSO2CF3, complex [Pt{NH=C(Ph)N(Me)C(Ph)=NPh}2][CF3SO3]2 (5) which models the bis-protonated form of 4. The complexes were characterized by 1H, 13C NMR, and IR spectroscopies, FAB-MS and by C, H, N elemental analysis. The X-ray crystallography of 4.2CH2Cl2 enables the confirmation of the square planar coordination geometry of the metal center with almost planar imidoylamidine ligands, while in 5.2CHCl3 the planarity of the metallacycles is lost and and the central N atom is sp3-hybridized. The imidoylamidinate complexes represent a new family of Pt(II)-based luminescent complexes and they are emissive at room temperature both in solution and in the solid state, with an emission quantum yield ranging from 3.7 x 10(-4) to 6.2 x 10(-2) in methanol solution; the emission intensity is pH-dependent, being quenched at low pH. UV-visible and luminescence spectroscopies indicate that the lowest excited state of these compounds is 3MLCT or 3IL with significant MLCT character, with emission lifetimes of a few micros. A blue shift of both the absorption and emission with increasing solvent polarity and with decreasing pi-electron withdrawing properties of the ligand substituent was observed.  相似文献   

4.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

5.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

6.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

7.
The reaction of vic-dioximes with the organonitrile platinum(IV) complexes trans-[PtCl4(RCN)2] (R = Me, CH2Ph, Ph, vic-dioxime = dimethylglyoxime; R = Me, vic-dioxime = cyclohexa-, cyclohepta-, and cyclooctanedione dioximes) proceeds rapidly under relatively mild conditions and affords products of one-end addition of the dioximes to the nitrile carbon, i.e. [PtC4(NH=C(R)ON=[spacer]=NOH)2] (1-6) (R = Me, CH2Ph, Ph, spacer = C(Me)C-(Me) for dimethylglyoxime; R = Me, spacer = C[C4H8]C, C[C5H10]C, C[C6H12]C for the other dioximes), giving a novel type of metallaligand. All addition compounds were characterized by elemental analyses (C, H, N, C1, Pt), FAB mass spectrometry, and IR and 1H, 13C[1H], and 195Pt NMR spectroscopy. X-ray structure determination of the dimethylformamide bis-solvate [PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] x 2DMF (la) disclosed its overall trans geometry with the dimethylglyoxime part in anti configuration and the amidine one-end (rather than N,N-bidentate) coordination mode of the N-donor ligands. When a mixture of cis- and trans-[PtC4(MeCN)2] in MeCN was treated with dimethylglyoxime, the formation of, correspondingly, cis- and trans-[PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] (1) was observed and cis-to-trans isomerization in DMSO-d6 solution was monitored by 1H, 2D [1H,15N] HMQC, and 195Pt NMR spectroscopies. Although performed ab initio calculations give evidence that the trans geometry is the favorable one for the iminoacylated species [PtCl4-(ligand)2], the platinum(IV) complex [PtCl4(NH=C(Me)ON=C[C4Hs]C=NOH)2] (4) was isolated exclusively in cis configuration with the two metallaligand "arms" held together by intramolecular hydrogen bonding between the two peripheral OH groups, as it was proved by single-crystal X-ray diffractometry. The classic substitution products, e.g. [PtC12(N,N-dioximato)2] (12-15), are formed in the addition reaction as only byproducts in minor yield; two of them, [PtCl2(C7H11N2O2)2] (14) and [PtCl2(C8H13N2O2)2] (15), were structurally characterized. Complexes (12-15) were also prepared by reaction of the vic-dioximes with [PtCl4L(Me2SO)] (L = Me2SO, MeCN), but monoximes (Me2C=NOH, [C4H8]C=NOH, [C5H10]C=NOH, PhC(H)=NOH, (OH)C6H4C(H)= NOH) react differently adding to [PtCl4(MeCN)(Me2SO)] to give the corresponding iminoacylated products [PtCl4(NH=C(Me)ON=CRR')(Me2SO)](7-11).  相似文献   

8.
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation.  相似文献   

9.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

10.
The reaction of K 2[PtCl 4] and HO(H)NCMe 2CMe 2N(H)OH.H 2SO 4 ( BHA.H 2SO 4; 2) in a molar ratio 1:2 at 20-25 degrees C in water affords a mixture of [Pt(BHA) 2][PtCl 4] ( 5) and [Pt(BHA-H) 2] ( 6) ( BHA- H = anionic monodeprotonated form of BHA) which, upon heating at 80-85 degrees C for 12 h or on prolonged keeping at 20-25 degrees C for 2 weeks, is subject to a slow transformation giving [PtCl 2(BHA)] ( 7). The latter compound is also obtained from the reaction between K[PtCl 3(Me 2 SO)] and 2. The chlorination of [PtCl 2(BHA)] ( 7) in freshly distilled dry chloroform leads to the selective oxidation of one N(H)OH group yielding [PtCl 2{HO(H) NCMe 2CMe 2 N=O}] ( 13), while the chlorination in water produces the complex [PtCl 2(O= NCMe 2CMe 2 N=O)] ( 14) bearing the unexplored dinitrosoalkane species. Treatment of 14 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) in CH 2Cl 2 results in the liberation of the dinitrosoalkane ligand followed by its fast cyclization giving the alpha-dinitrone (3,3,4,4-tetramethyl-1,2-diazete-1,2-dioxide) in solution and the solid [Pt(dppe) 2](Cl) 2. The Pt (II) complexes with hydroxylamino ( intersection)oximes [PtCl 2{HO(H) NC(Me) 2C(R)= NOH}] (R = Me 8; R = Ph 9) upon their oxidation with Cl 2 in CHCl 3 afford the nitrosoalkane derivatives [PtCl 2{O= NCMe 2C(R)= NOH}] (R = Me 16; Ph 17), respectively, while the corresponding chlorination of the bis-chelates [Pt{HO(H) NCMe 2C(R)= NOH} 2] (R = Me 10; Ph 11) gives [Pt{O= NCMe 2C(R)= NO} 2] (R = Me 18; Ph 19). The formulation of 5- 19 is based on C, H, and N microanalyses, IR, 1D ( (1)H, (13)C{ (1)H}, (195)Pt) and 2D ( (1)H, (1)H-COSY, (1)H, (13)C-HSQC) NMR spectroscopies, and X-ray diffraction for five complexes ( 5, 7, and 12- 14).  相似文献   

11.
The coupling between tetramethylguanidine, HN=C(NMe2)2, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl2(RCN)2] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl2{NH=C(R)N=C(NMe2)2}2] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metal-mediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and 1H and 13C{1H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their Z right harpoon over left harpoon E isomerization in solution were performed using 2D 1H,1H-COSY, 1H,13C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe2)2 were liberated from the platinum(II) complexes [PtCl2{NH=C(R)N=C(NMe2)2}2] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe2)2 species (5-7) in solution and the solid [Pt(dppe)2](Cl)2. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl3 to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe2. The formulation of 8-10 is based on ESI-MS, 1H, 13C{1H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.  相似文献   

12.
The coupling between coordinated propiononitriles in trans-[PtCln(EtCN)2] (n = 2, 4) and the 1,2-hydroxylaminooximes HON(H)CMe2C(R)=NOH (R = Ph 1, Me 2) proceeds smoothly in CHCl(3) at ca. 40-45 degrees C and gives trans-[PtCln{NH=C(Et)ON(H)CMe2C(R)=NOH}2] (n = 2, R = Ph 5, Me 6; n = 4, R = Ph 7, Me 8) in 80-85% isolated yields. The reaction is highly regioselective, and both spectroscopic (IR; FAB+-MS; 1D 1H, 13C{1H}, and 195Pt NMR; and 2D 1H,13C HMQC, 1H,13C HMBC, and 1H,15N HMQC NMR) and X-ray data for 6-8 suggest that the addition proceeds exclusively via the hydroxylamine moiety of the 1,2-hydroxylaminooxime species; the existence of an oxime group remote from the nucleophile was also confirmed. Heating of 6 in air leads to its conversion to the unusual nitrosoalkane complex [PtCl2{HON=C(Me)C(Me)2N=O}] (9), whereas in the case of 5, only the metal-free salt [H3NC(Me)2C(Ph)=NOH]2(NO3)Cl.H2O (10) was isolated. To compare the kinetic aspects and trends in the addition of both types of nucleophiles (oximes and hydroxylamines; for the latter, see our recent work: Inorg. Chem. 2005, 44, 2944) to coordinated nitriles, a kinetic study of the addition of HON=C(CH2Ph)2 to [Ph3PCH2Ph][PtCl5(EtCN)] (11) to give [Ph(3)PCH(2)Ph][PtCl(5){NH=C(Et)ON=C(CH2Ph)2}] (12) was performed. The calculated rate constant k2 of 3.9 x 10(-6) M(-1) s(-1) at -20 degrees C for the addition of the oxime indicates that the hydroxylamine is, by a factor 1.7 x 10(4), more reactive toward the addition to nitriles than the oxime. Results of the synthetic, kinetic, and theoretical (at the B3LYP level of theory) studies have demonstrated that the high regioselectivity of the reactions of the 1,2-hydroxylaminooximes with ligated nitriles is both kinetically and thermodynamically controlled.  相似文献   

13.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

14.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

15.
Free nitriles NCCH2R (1a R = CO2Me, 1b R = SO2Ph, and 1c R = COPh) with an acidic alpha-methylene react with acyclic nitrones -O+N(Me)=C(H)R' (2a R' = 4-MeC6H4 and 2b R' = 2,4,6-Me3C6H2), in refluxing CH2Cl2, to afford stereoselectively the E-olefins (NC)(R)C=C(H)R' (3a-3c and 3a'-3c'), whereas, when coordinated at the platinum(II) trans-[PtCl2(NCCH2R)2] complexes (4a R = CO2Me and 4b R = Cl), they undergo cycloaddition to give the (oxadiazoline)-PtII complexes trans-[PtCl2{N=C(CH2R)ON(Me)C(H)R'}2] (R = CO2Me, Cl and R' = 4-MeC6H4, 2,4,6-Me3C6H2) (5a-5d). Upon heating in CH2Cl2, 5a affords the corresponding alkene 3a. The reactions are greatly accelerated when carried out under focused microwave irradiation, particularly in the solid phase (SiO2), without solvent, a substantial increase of the yields being also observed. The compounds were characterized by IR and 1H, 13C, and 195Pt NMR spectroscopies, FAB+-MS, elemental analyses and, in the cases of the alkene (NC)(CO2Me)C=C(H)(4-MeC6H4) 3a and of the oxadiazoline complex trans-[PtCl2{N=C(CH2Cl)ON(Me)C(H)(4-C6H4Me)}2] 5c, also by X-ray diffraction analyses.  相似文献   

16.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with R'OH (R' = Me, Et, n-Pr, i-Pr, n-Bu) at 45 degrees C in all cases allowed the isolation of the trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] imino ester complexes, while the reaction between cis-[PtCl(4)(RCN)(2)] and the least sterically hindered alcohols (methanol and ethanol) results in the formation of cis-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R/R' = Me/Me) or trans-[PtCl(4)[(E)-NH=C(Et)OR'](2)] (R' = Me, Et), the latter being formed via thermal isomerization (ROH, reflux, 3 h) of the initially formed corresponding cis isomers. The reaction between alcohols R'OH and cis-[PtCl(4)(RCN)(2)] (R = Me, R' = Et, n-Pr, i-Pr, n-Bu; R = Et; R' = n-Pr, i-Pr, n-Bu), exhibiting greater R/R' steric congestion, allowed the isolation of cis-[PtCl(4)[(E)-NH=C(R)OR'][(Z)-NH=C(R)OR']] as the major products. The alcoholysis reactions of poorly soluble [PtCl(4)(RCN)(2)] (R = CH(2)Ph, Ph) performed under heterogeneous conditions, directly in the appropriate alcohol and for a prolonged time and, for R = Ph, with heating led to trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R = CH(2)Ph, R' = Me, Et, n-Pr, i-Pr; R = Ph, R' = Me) isolated in moderate yields. In all of the cases, in contrast to platinum(II) systems, addition of R'OH to the organonitrile platinum(IV) complexes occurs under mild conditions and does not require a base as a catalyst. The formed isomerically pure (imino ester)Pt(IV) complexes can be reduced selectively, by Ph(3)P=CHCO(2)Me, to the corresponding isomers of (imino ester)Pt(II) species, exhibiting antitumor activity, without change in configuration of the imino ester ligands. Furthemore, the imino esters NH=C(R)OR' can be liberated from both platinum(IV) and platinum(II) complexes [PtCl(n)[H=C(R)OR'](2)] (n = 2, 4) by reaction with 1,2-bis(diphenylphosphino)ethane and pyridine, respectively. All of the prepared compounds were characterized by elemental analyses (C, H, N), FAB mass spectrometry, IR, and (1)H, (13)C[(1)H], and (195)Pt (metal complexes) NMR spectroscopies; the E and Z configurations of the imino ester ligands in solution were determined by observation of the nuclear Overhauser effect. X-ray structure determinations were performed for trans-[PtCl(4)[(E)-NH=C(Me)OEt](2)] (2), trans-[PtCl(4)[(E)-NH=C(Et)OEt](2)] (10), trans-[PtCl(4)[(E)-NH=C(Et)OPr-i](2)] (11), trans-[PtCl(4)[(E)-NH=C(Et)OPr-n](2)] (12), and cis-[PtCl(4)[(E)-NH=C(Et)OMe](2)] (14). Ab initio calculations have shown that the EE isomers are the most stable ones for both platinum(II) and platinum(IV) complexes, whereas the most stable configurations for the ZZ isomers are less stable than the respective EZ isomers, indicating an increase of the stability on moving from the ZZ to the EE configurations which is more pronounced for the Pt(IV) complexes than for the Pt(II) species.  相似文献   

17.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

18.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

19.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

20.
[PtCl2(RCN)2] (1a R=CH2CO2Me, 1b R=CH2Cl) prepared upon EtCN replacement at [PtCl2(EtCN)2] by the appropriate organonitrile, react with a cyclic nitrone -O-+N=CHCH2CH2C(Me)2, under mild conditions, to give, in an unprecedented single-pot synthesis involving spontaneous N-O bond cleavage, the ketoimino complexes trans-[PtCl2[RC(=O)N=CN(H)C(Me)2-CH2CH2]2 (2a, 2b) with two (pyrrolidin-2-ylidene)amino ligands. The analogous 2c (R=Et) and 2d (R=Ph) are formed by treatment with H2, in the absence of any added catalyst, of the Delta4-1,2,4-oxadiazoline complexes trans-[PtCl2[N=C(R)ONC(Me)2CH2CH2CH]2] (3a R=Et, 3b R=Ph) derived from the [2 + 3]-cycloaddition of the cyclic nitrone with the appropriate organonitrile complex of type 1. The compounds were characterized by elemental analyses, IR, 1H, (13C and 195Pt NMR spectroscopies, FAB mass spectrometry and X-ray structure analyses for 2a and 2d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号