首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymers of 2-(dimethylamino)ethylmethacrylate (DMAEMA) and acrylic acid (AAc) onto polypropylene films were investigated for obtaining a pH- and thermo-sensitive material. DMAEMA and AAc were grafted by direct irradiation and pre-irradiation methods, respectively, using a 60Co γ-source. Due to the acidic and basic nature of the monomers, this novel copolymer corresponds to the class of polyzwitterions. Their behavior was studied in presence of different buffer solutions from pH 2 to 12 for different grafting percentages (from 9 to 362%) of AAc and keeping the DMAEMA grafting percentage constant. These modified films showed the same critical pH point at 7.6 in a range of temperatures from 23 to 37 °C. The swelling percentage showed a dependence on AAc content and pH. The lower critical solution temperature was observed at 36 °C when AAc content was less than 30% of grafting. The grafted films were characterized by swelling behavior, FTIR-ATR and UV–Vis spectrometry for study of loading and release of vancomycin as a model drug at room temperature.  相似文献   

2.
Binary graft copolymerization of thermosensitive 2-(dimethylamino) ethyl methacrylate (DMAEMA) and pH sensitive acrylic acid (AAc) monomers onto polypropylene (PP) films was carried out by a two step method using a 60Co gamma radiation source. The PP film was initially modified by grafting of DMAEMA through a direct method. The DMAEMA-g-PP film obtained was then subjected to radiation grafting of AAc by the pre-irradiation method to give (DMAEMA-g-PP)-g-AAc. The optimal conditions, such as reaction time, reaction temperature, monomer concentration, and dose were studied. The grafted samples were verified by the FTIR-ATR spectroscopy and swelling; thermal properties were analyzed by DSC and TGA.  相似文献   

3.
Polypropylene (PP) films were modified by the consecutive grafting of N,N′-dimethylacrylamide (DMAAm) and N-isopropylacrylamide (NIPAAm) (two-step method) using preirradiation method with gamma-rays. The effect of absorbed dose, monomer concentration and reaction time on the degree of grafting was determined. The grafted samples were verified by the FTIR-ATR spectroscopy; thermal properties were analyzed by differential scanning calorimetry (DSC) and the stimuli-responsive behavior was studied by swelling and contact angle in water as well as DSC. Thermoresponsive films of (PP-g-DMAAm)-g-NIPAAm presented a lower critical solution temperature (LCST) at 36.5 °C.  相似文献   

4.
Polymer systems based on the pH-responsive monomer acrylic acid (AAc) and the thermosensitive monomer N-isopropylacrylamide (NIPAAm) were synthesized using gamma radiation. Three systems were synthesized: a comb-type hydrogel structure (grafting of NIPAAm onto crosslinked PAAc), a binary graft of both monomers onto a polypropylene (PP) film synthesized by a one-step method and a binary graft prepared by a two-step method. The binary graft systems were characterized by swelling behavior and the reversibility of water uptake. The three systems were compared with respect to their Cu(II) adsorption quantity, reversibility and time response. The binary graft system synthesized in one step exhibited the best adsorption response. The comb-type hydrogel required 150 h to reach its maximum swelling percentage, and the binary graft systems on polypropylene (PP) prepared by the one- and two-step irradiation-based methods required 10 and 30 min, respectively. The optimum pH range for Cu(II) immobilization was 5-6 in the binary graft system synthesized in one step. The maximum adsorption capacity for Cu(II) in the (PP-g-(AAc/NIPAAm)) (45% graft) was found to be 337 mg g−1, and the adsorption followed the Freundlich model.  相似文献   

5.
A pH-sensitive comb-type hydrogel was obtained by gamma radiation polymerization and crosslinking of acrylic acid (AAc) in solution. The pH-sensitive 4-vinylpyridine (4VP) was then grafted to the poly acrylic acid (PAAc) hydrogel using gamma radiation from a 60Co source. The comb type graft polymers obtained (net-PAAc)-g-4VP has been studied through determination of graft yield and swelling behavior. The critical pH value was found to be 5.6. The apparent mechanical properties appear to be qualitatively better than hydrogels of PAAc upon swelling. The new comb-type system presents faster swelling response (30 h) than the polyacrylic acid hydrogel (50 h). The increase in dose rate from 7.3 to 11.3 kGy h−1, increase the radiation grafting percentage of 4VP in the system. Comb-type polymers were also characterized by DSC, TGA and FTIR-ATR.  相似文献   

6.
Here 4-vinylpyridine (4VP) was grafted onto polypropylene films (PP) by mutual irradiation method to give PP-g-4VP; N-isopropylacrylamide (NIPAAm) was then grafted onto the PP-g-4VP films to give (PP-g-4VP)-g-NIPAAm by pre-irradiation method, using a 60Co γ-source. The dependence of grafting percentage on radiation dose, temperature, reaction time, and monomer concentration was studied. (PP-g-4VP)-g-NIPAAm films were characterized by infrared spectroscopy (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The critical pH point and lower critical solution temperature (LCST) were determined by swelling and water contact angle measurements. The LCST also was determined by DSC. The binary graft copolymer films are shown to be thermo-pH sensitive.  相似文献   

7.
A novel comb-type grafted hydrogel system of net-[PP-g-AAc]-g-4VP was synthesized by gamma radiation in three steps. In the first step a pH sensitive graft copolymer of AAc onto PP film was obtained by radiation grafting of acrylic acid (AAc) onto polypropylene (PP) films in aqueous solution at radiation doses of 10 kGy with a 60Co source. The grafted side chains of poly (acrylic acid) (PAAc) were then cross-linked with gamma radiation at different radiation doses to give net-[PP-g-AAc]. Finally, 4-vinylpyridine (4VP) was grafted into the net-[PP-g-AAc]. The comb-type grafted hydrogel obtained, net-[PP-g-AAc]-g-4VP, has been studied through determination of graft yield and swelling behavior at room temperature. Two critical pH values were found for net-[PP-g-AAc]-g-4VP at 4.5 and 7.2. Initial studies on the immobilization of Cu2+ ions from solution into net-[PP-g-AAc]-g-4VP films were performed.The comb-type grafted hydrogel, grafted onto PP was also characterized by differential scanning calorimetry (DSC), scanning electronic microscopy (SEM) and FTIR-ATR.  相似文献   

8.
This work focuses on the effect of gamma-ray radiation conditions on the stimuli-responsiveness and drug-eluting performance of polypropylene (PP) substrates grafted with interpenetrating networks of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc). PNIPAAm was cross-linked applying 10–100 kGy doses in the presence and absence of the chemical cross-linker N,N′-methylenebisacrylamide (MBAAm). Then, the net-PP-g-PNIPAAm was interpenetrated with PAAc synthesized under a 2.5 kGy dose to obtain net-PP-g-PNIPAAm-inter-net-PAAc films. The amount of grafted PNIPAAm (80%, 125% and 145% levels) and the cross-linking radiation dose (10, 40 and 70 kGy levels) strongly determine the interpenetration of PAAc, the swelling degree, the amount of vancomycin loaded and its release rate. The chemical cross-linker only caused a minor decrease in the degree of swelling. The higher the PNIPAAm grafted on PP and the lower the cross-linking radiation dose, the more the PAAc in the IPN and, consequently, the higher the vancomycin loaded through specific interactions and the more sustained the release (>8 h). The films possessing these features exhibited vancomycin release rate per surface unit suitable to prevent bacterial growth. Thus, adequate tuning of the radiation doses during grafting and cross-linking of the PNIPAAm networks may enable to achieve surface-modified materials for medical devices with an antibiofilm performance.  相似文献   

9.
Preirradiation grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene) (PTFE) and poly(tetrafluoroethylene-hexafluoropropylene) (FEP) films was investigated. The influence of grafting parameters such as preirradiation dose, monomer concentration, and grafting temperature on the rate and grafting yield was studied. Different solvents were used for diluting the monomer and it was found that the aqueous monomer solution at a concentration of 80 wt% was suitable for this grafting system. However, the graft polymerization of NVP in benzene terminated within a short time without significant grafting yield. The dependence of the grafting rate on preirradiation dose and monomer concentration was 1.2 and 1.07 order, respectively, for grafting onto PTFE films and 1.1 and 1.2 order, respectively, for grafting onto FEP films. Arrhenius plots for grafting onto PTFE films showed a breaking point at ca. 35°C and the overall activation energies were calculated as 23.6 and 9.0 Kcal/mol below and above 35°C, respectively. For grafting onto FEP films, however, no break was observed in the Arrhenius plots; the overall activation energy was 11.9 Kcal/mol. The swelling behavior and electric resistance of the grafted materials were investigated.  相似文献   

10.
Both poly[2-(dimethylamino) ethyl methacrylate] (PDMAEMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) were radiation grafted onto polypropylene films (PP) using gamma radiation from a 60Co source. PP was pre-irradiated by gamma ray for modification following by grafted PDMAEMA and PEGMEMA by a one step method. Grafting was studied as a function of the pre-irradiation dose between 20 and 180 kGy, dose rate of 10.4 kGy/h, and monomer concentration 50% of PDMAEMA/PEGMEMA (1/1) in different solvents (toluene, acetone, and methanol). FTIR-ATR, TGA, and DSC were carried out in the characterization of the graft copolymer obtained. Stimuli-responsive behavior and critical pH point were studied by swelling in water. pH and thermo-responsive films of PE-g-(DMAEMA/PEGMEMA) presented a lower critical solution temperature (LCST) of 50 °C and critical pH point around 8.7.  相似文献   

11.
Equilibrium properties (swelling) and transport phenomena (dialysis) of non-ionizable membranes, obtained by radiation grafting of N-vinylpyrrolidone onto thin PTFE films, were studied. Grafting was conducted by the direct method with monomer solutions in benzene. The overall activation energy of grafting determined between 20 and 50° is high (12.5 kcal mol?1): the reaction is controlled by the monomer diffusion into PTFE film. The length of grafted chains increases with temperature.The molality of the membranes decreases when the temperature of grafting increases; for a given grafting ratio, the swelling is higher for membranes containing a small number of long grafts than for membranes with numerous short branches. The transfer of both ions and water is a function of the free volume in the films, it depends on the grafting ratio and is not influenced by the preparation conditions.  相似文献   

12.
Based on a biodegradable cross-linker, acryloyloxyethylaminopolysuccinimide (AEA-PSI), a series of looser cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their water content, swelling/deswelling kinetics, and the morphology of the gels were investigated. The swelling behaviors of AEA-PSI-cross-linked P(NIPAAm/AAc) hydrogels were investigated in Dulbecco’s phosphate-buffered saline (pH = 7.4), in the distilled water, and in the simulated gastric fluids (pH = 1.2), respectively. The water contents of the hydrogels were controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the temperature. In the swelling kinetics, all the dried hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced significantly by the amounts of AEA-PSI and AAc content. The deswelling kinetics of the hydrogel were independent of the content of AAc and cross-linker. Lastly, the morphology of the hydrogels was estimated by the field scan electron microscopy.  相似文献   

13.
Biodegradable cross-linkers acryloyloxyethylaminopolysuccinimide (AEA-PSI) were obtained by microwave irradiation using maleic anhydride as materials. With AEA-PSI cross-linker, cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, thermodynamics stability, and enzymatic degradation properties were investigated. By alternating the NIPAAm/AAc molar ratio, hydrogels were synthesized to have LCST in the vicinity of 37 °C. The LCST of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was significantly influenced by monomer ratio of the NIPAAm/AAc but not by the cross-linking density within the polymer network. The water content of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was more than 90% even at 37 °C, which was controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the cross-linking density. The thermodynamics stability was also characterized by thermogravimetry. In enzymatic degradation studies, breakdown of the AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on the cross-linking density. Submitted to Colloid and Polymer Science, 2007-1-28.  相似文献   

14.
The work presented herein reports on polypropylene films grafted with N,N′-dimethylacrylamide and 2-hydroxyethylmethacrylate. The grafted films were obtained by an oxidative pre-irradiation method in one step using a gamma source of 60Co. The optimal conditions such as reaction time, monomer concentrations and radiation doses were investigated. Characterization of the grafted polymers was carried out through FTIR-ATR, TGA, DSC, and swelling. Grafts onto polymeric films between 10 and 850% were obtained at doses from 20 to 150 kGy and a dose rate of 8.3 kGy/h.  相似文献   

15.
Responsive polymers have been the focus of many studies during the past decade because of their ability to change according to environmental stimuli. In this paper, we report on the development of a method to synthesize a pH/temperature‐sensitive linear copolymer, poly(N‐isopropylacrylamide‐ co‐acrylic acid)(poly(NIPAAm‐co‐AAc)), with a molecular weight of about 106–105 Da in water using azobisisobutyronitrile (AIBN) as the initiator. The effects of the following on the lower critical solution temperature (LCST) of the copolymer and homopolymer of NIPAAm were investigated: the type of buffer salts and pH changes of test solutions, molecular weight and concentration of homopolymer/copolymer solutions, and AAc monomer molar feed ratio (mol%). The effects of different synthesis methods on the molecular weight and on the AAc content were also evaluated. The mechanism of action in environments with different pH values is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The thermosensitive polyvinyl alcohol-graft-N-isopropylacrylamide–methacrylic acid (PVA-g-NIPAAm–MAc) terpolymer membranes containing carboxyl groups were prepared. The swelling ratios of the membranes were measured at various temperatures. The temperature dependence of the swelling ratios of the terpolymer membranes was different from that of PVA-g-NIPAAm copolymer membranes. The swelling ratios of PVA-g-NIPAAm–MAc (5–15) (wt % in feed) increased with increasing temperature up to 35–38°C, then decreased. However, the swelling ratio of PVA-g-NIPAAm–MAc (30–50) terpolymer membranes did not depend on temperature in the temperature range of 10–48°C. To clarify the swelling behavior of the PVA-g-NIPAAm–MAc terpolymer membranes, the swelling ratios of the PVA-g-NIPAAm–Acrylic acid (AAc) terpolymer membranes, the viscosity, and optical density of various polymer solutions were measured. The different swelling behavior of PVA-g-NIPAAm–MAc (or AAc) terpolymer membranes from that of PVA–NIPAAm copolymer membranes was thought to be due to hydrogen bonding between amide groups in NIPAAm moieties and carboxyl groups in MAc (or AAc) moieties in the terpolymer membranes and the difference of swelling behavior between PVA-g-NIPAAm–MAc and PVA-g-NIPAAm–AAc terpolymer membranes was thought to be brought about by hydrophobic interaction due to methyl groups in PVA-g-NIPAAm–MAc terpolymer membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3097–3106, 1998  相似文献   

17.
Simultaneous grafting of N-isopropylacrylamide (NIPAAm) and N-(3-aminopropyl) methacrylamide hydrochloride (APMA) on polypropylene (PP) was investigated for obtaining interfaces that are stimuli-responsive under physiological conditions. A pre-irradiation method was optimized tuning the γ-irradiation dose, reaction time, temperature, and monomers concentrations. FT-IR ATR and XPS analysis of the grafted copolymers evidenced a greater content in NIPAAm than in APMA; the APMA/NIPAAm ratio increasing with the concentration of APMA in the reaction medium and when the grafting was carried out in 1 M NaNO3. The grafted films were characterized regarding their thermal properties (DSC and TGA) swelling behavior and contact angle. Immersion of the pre-irradiated films in 1 M NIPAAm/0.5 M APMA aqueous solution rendered PP-g-(1NIPAAm-r-0.5APMA) which exhibited rapid and reversible transitions showing a LCST around the physiological temperature. By contrast, a greater content in APMA enhanced the hydrophilicity and prevented the shrinking of PP-g-(1NIPAAm-r-1APMA).  相似文献   

18.
Heterogeneous hydrogels were prepared by -ray irradiation of aqueous solutions of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) having various compositions above the lower critical solution temperature. The structures of the poly(N-isopropylacrylamide) (PNIPAAm) gel and poly(NIPAAm-co-AAc) gels in both their highly hydrated and their natural states were observed by environmental scanning electron microscopy. The heterogeneous structures of the homopolymer gel and the copolymer gels whose AAc contents were between 10–50% consisted of interconnected microspheres. In the copolymer gel with a high AAc content, the structure became a largely interconnected one which lacked micro-droplets. The hydrophobic interaction caused by hydrogen bonding between the unionized carboxylic acid groups of AAc and the amide groups of NIPAAm, the rates of polymerization, and the aggregation rates play important roles in the formation of interconnected microsphere gel structures.  相似文献   

19.
Graft-polymerization of acrylic acid (AAc) monomer onto poly(tetraflouroethylene-perflouro vinyl ether) (PFA) copolymer film was carried out using gamma irradiation technique to synthesize grafted copolymer film PFA-g-PAAc (PFA-COOH). The effect of the dose on the degree of grafting of AAc onto PFA film was investigated. The results showed that the degree of grafting increases with increasing the irradiation dose. The grafted [PFA-COOH] film was chemically modified by reaction with aniline to produce modified [PFA-CO-NH-ph] film, followed by sulphonation reaction to introduce sulfonic acid (SO3H) groups to get other modified [PFA-CO-NH-ph-SO3H] film. The chemical structures of the grafted and modified films were identified by FT-IR, XRD, and SEM. It is of particular interest to measure the electrical conductivity of grafted and modified membranes as a function of degree of grafting. It was found that the conductivity of the grafted films increases with increasing the degree of grafting, however a slightly increase in conductivity was observed in [PFA-CO-NH-ph-SO3H] sample. The electrical conductivity property of the modified PFA membranes suggests their possible use for fuel cell applications.  相似文献   

20.
Grafting acrylic acid (AAc) onto thermoplastic elastomer (TE) films, a kind of product from natural rubber latex block-grafted by methyl methacrylate monomer was investigated. The preirradiated dose from a gamma Co-60 source for TE at 75 kGy was considered to be useful. Significant concentration of AAc aqueous solution for the grafting process is 20% (vol%). Dose rate of about 3.4 kGy/h is more effective for the graft. The temperature of around 90°C is suitable for obtaining a higher degree of graft. It is observed that the rate of grafting of AAc onto TE is proportional to 0.48 power of dose rate and 1.9 power of AAc concentration. The rate of grafting can be expressed as Rg=k·I0.48·M1.9. On the other hand, overall activation energy of the graft is estimated about 7.2 Kcal/mol. The FTIR spectrum analysis of TE and TE-g-AAc films was proceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号