首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Surface morphology and composition of solution-cast films of poly(methyl methacrylate)-g-poly(ethylene oxide)(PMMA-g-PEO) were investigated by using XPS, DSC, SEM and contact angle measurement. The microphase separatedstructure of the copolymers was studied by TEM. Generally, for the same graft copolymer, the surface content of PEO orhydrophilicity can be as follows: Surface treated with petroleum ether or cyclohexane>surface untreated with solvent>surface treated with water or ethyl alcohol. Graft copolymer having longer PEO side chains and higher PEO content shows aseparated PEO phase with even a certain degree of crystallinity on the surface. PEO crystallinity was destroyed by water orethyl alcohol treatment, however, surface treatment with petroleum ether or cyclohexane favors the growth of PEO crystal.TEM shows that graft copolymers with longer PEO side chains (M_n of PEO, 3200) may readily undergo microphase separation and the shape and size of domains depend on the copolymer's composition.  相似文献   

2.
The ultrasonic degradation of poly(ethylene oxide) and poly(vinyl acetate) in benzene solution, and grafting reaction of poly(vinyl acetate) with poly(ethylene oxide) were studied. It is found that the chain-scission reactions follow the course suggested by D. W. Ovenall. The structure of the copolymer was identified by IR, NMR and DTA, showing that the copolymer prepared is a graft copolymer mainly. The copolymer formed by irradiating 1% PEO/PVAc solution (PEO/PVAc:1/1 by weight) for a period of 10 rain at 18.2 kHZ, with 2.0 A input current on reversed main circuit, amounts to 10.5%.  相似文献   

3.
Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear.In this article,we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles,framboidal vesicles,lamellae,beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers.We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states,and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers.Specifically,the self-assembly temperature(Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems,and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state(metastable or stable) of nanoparticles.For example,simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Tsis around or slightly below the glass transition temperature(Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Tsfacilitates the formation of metastable vesicles.By contrast,thermodynamically stable solid nanoparticles such as spherical micelles and lamellae(mainly formed in DMF/water)are not sensitive to ultrasound at all,neither are the vesicles in THF/water at stable states when the Tsis highly above Tg.In addition,we unravel that the responsive rate is highly dependent on the sonication temperature(Tu),i.e.,the higher the Tu,the faster the rate.Overall,the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers.  相似文献   

4.
Zhao-qiang  Wu  Shu  Yang  Wen-yan  Liao  孟令芝 《高分子科学》2006,(3):315-321
Novel amphiphilic fluorescent graft copolymer (PVP-PyAHy) was successfully synthesized by the free radical copolymerization of hydrophobic monomer N-(1-pyrenebutyryl)-N'-acryloyl hydrazide (PyAHy) with hydrophilic precursor polymers of vinyl-functionalized poly(N-vinylpyrrolidone) (PVP) in DMF. The copolymer is amphiphilic and has intrinsic fluorescence. FT-IR, ^1H-NMR, TEM, gel permeation chromatography-multi-angle laser light scattering, UV-Vis spectroscopy and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation shows that the copolymer PVP-PyAHy forms micelles in aqueous solution. Results of fluorometric measurements illustrate that the critical micelle concentration (CMC) value of PVP-PyAHy in aqueous solution is about 0.90 mg/mL. To examine the encapsulation ability of the copolymer in aqueous media, methyl yellow was employed as a model hydrophobic agent. The loading level of the polymer to methyl yellow is 8.8 mg/g. The cytotoxicity assays for Madin Darby Canine Kidney (MDCK) cells shows good biocompatibility of PVP-PyAHy in vitro. These results suggest the potential of this copolymer PVP-PyAHy as drugs delivery carrier and fluorescent tracer.  相似文献   

5.
β-Cyclodextrin/poly(γ-benzyl L-glutamate) (β-CD-PBLG) copolymers were synthesized by ring-opening polymerization of N-carboxy-γ-benzyl L-glutamate anhydride (BLG-NCA) in N,N-dimethylformamide (DMF) initiated by mono-amino-β-cyclodex-trin(H2N-β-CD). The structures of the copolymers were confirmed by IR, 1H NMR and GPC. The fluorescence technique was used to determine the critical micelle concentrations (CMC) of copolymer miceU solution, the diameter and the distribution of micelles were characterized by DLS. The results showed that BLG-NCA could be initiated by H2N-β-CD to produce copolymer. The nano-micells were formed by these copolymers in water.  相似文献   

6.
Despite the fact that some progress has been made in the self-assembly of H-shaped polymers,the corresponding self-assemblies that respond to external stimulus and are further utilized to adjust the release of drugs are still deficient.The stimuli-responsive segments with amphiphilic H-shaped structure are generally expected to enhance the controllability of self-assembly process.The synthesis and self-assembly behavior of thermo-responsive amphiphilic H-shaped polymers with poly(ethylene glycol) (PEG),polytetrahydrofuran (PTHF) and poly(N-isopropyl acrylamide) (PNIPAM) as building blocks are reported in this paper.The inner architecture structure and size of complex micelles formed by H-shaped self-assemblies were effectively adjusted when the solution temperature was increased above the lower critical solution temperature of PNIPAM segments.Furthermore,it was found that the architecture of self-assemblies underwent a transition from the complex micelles based on primary micelles with hybrid PEG/PNIPAM shells to large complex micelles based on primary micelles with hybrid PTHF/PNIPAM cores and PEG shells during the thermal-induced self-assembly process.The adjustable release rate of doxorubicin (DOX) from the DOX-loaded complex micelles and basic cell experiments further proved the feasibility of these self-assemblies as the thermal-responsive drug delivery system.  相似文献   

7.
Amphiphilic block copolymers of poly(5-benzyloxy trimethylene carbonate)(PBTMC) and poly(ethylene glycol)(PEG) were synthesized through enzymatic polymerization using immobilized porcine pancreas lipase(IPPL).The obtained copolymers with different compositions were characterized by GPC and ~1H NMR.The copolymer composition was in agreement with the feed ratio. The molecular weight of the copolymers showed an increasing trend with the decrease of PEG contents.Micelles of the copolymers were formed by dialysis procedure,and characterized by transmission electron microscopy (TEM).  相似文献   

8.
Well-defined, reversibly light-responsive amphiphilic diblock copolymer grafted with spiropyran, was prepared by reversible addition–fragmentation chain transfer(RAFT) polymerization. The copolymer self-assembles into polymeric micelles in water and exhibits reversible dissolution and re-aggregation characteristics upon ultraviolet(UV) and visible(Vis)-light irradiation. The fluorescence response of spiropyran immobilized onto the copolymer was light switchable. When nitrobenzoxadiazolyl derivative(NBD) dyes are encapsulated into the core of the micelles, a reversible, light-responsive, dual-color fluorescence resonance energy transfer(FRET) system is constructed and processed, which is well regulated by alternatively UV/vis irradiation. We anticipate these photoswitchable and FRET lighting up nanoparticles will be useful in drug delivery and cell imaging or tracking synchronously.  相似文献   

9.
Above the critical micellar concentration (cmc), micelles with a wide variety of structures and shapes are formed with the increase of surfactant concentra-tion in surfactant-water or surfactant-water-oil systems, such as spherical micelles, rodlike micelles, and bilay-ers. The viewpoint that micelle should be in spheres of constant size was first proposed by Hartley[1]. Later experiments by light scatter indicated that most mi-celles were indeed spherical, and their aggregation numbers were c…  相似文献   

10.
袁金颖 《高分子科学》2014,32(6):690-702
In this work, a UV-Visible light controlled supramolecular system based on ethyl cellulose(EC) was constructed, combining the host-guest interaction of β-cyclodextrin(β-CD) group and trans-isomer of azobenzene(tAzo) group. To link β-CD to the hydrophobic section, renewable EC was used as macroinitiator to initiate the polymerization of ε-caprolactone(ε-CL) to form biocompatible and biodegradable comb copolymer EC-g-PCL, and β-CD was attached to the end of PCL side chain via click reaction. Meanwhile, hydrophilic PEG-tAzo was obtained by N,N'-dicyclohexylcarbodiimide(DCC) coupling. Then, the structures of the products were characterized by nuclear magnetic resonance(NMR) and gel permeation chromatography(GPC). Subsequently, with the formation of inclusion complexes by β-CD and tAzo groups, the obtained EC-g-PCL-β-CD/PEG-tAzo supramolecular system self-assembled in water with hydrophobic EC-g-PCL-β-CD as core and hydrophilic PEG-tAzo as shell. Furthermore, dynamic light scattering(DLS) and transmission electron microscopy(TEM) were utilized to investigate the particle size and size distribution, while NMR and UV-Vis spectra were applied to explore the UV-Visible light stimuli-responsiveness of the micelles.  相似文献   

11.
Physicochemical properties of PBLG (poly(gamma-benzyl-l-glutamate))-PEO (poly(ethylene oxide)) diblock copolymers composed of PBLG as the hydrophobic rod component and PEO as the hydrophilic component were investigated at the air-water interface. Surface pressure-area isotherms obtained by the Wilhelmy plate method provide several variables such as molecular size, compressibility of PEO, and the free energy change of the PBLG-PEO block copolymer. GE-1 (M(w) of PBLG:PEO=103,700:12,000), with a relatively longer rod, has negative temperature effects and GE-3 (M(w) of PBLG:PEO=8400:12,000), with a relatively shorter rod, shows a positive temperature effect because of the large entropy loss. These competitions were based on the block size of PBLG and PEO and were affected by various microstructures of the PBLG-PEO diblock copolymer. Monolayer aggregations transferred onto mica from the air-water interface were analyzed with AFM. AFM images of GE-1 monolayers show cylindrical micelles, but the self-assembled structure has many large domains. The monolayer of GE-2 (M(w) of PBLG:PEO=39,800:12,000), which has a medium size rod, forms a spherical structure at the air-water interface. Monolayers of GE-3, with a short rod length, form bilayer structures. These results demonstrate that the microstructures of PBLG-PEO diblock copolymers are related to free energy changes between rod and coil blocks.  相似文献   

12.
由氨基酸及其衍生物聚合形成的聚肽,因其独特的结构和性能,近年来在蛋白质结构模拟、分子链构象研究、生物医学等领域备受关注.其中两亲性聚肽共聚物的自组装行为,为开发具有生物相容性、可控释、可降解性的新型药物载体创造了条件.目前对聚肽共聚物自组装及载药性能研究主要集中于聚肽嵌段共聚物胶束,  相似文献   

13.
两亲性聚肽嵌段共聚物具有良好的生物相容性、生物安全性和可生物降解性,其在选择性溶剂中自组装形成的胶束在药物控释载体方面有着良好的应用前景[1~4].Cho等研究了聚(L-谷氨酸-γ-苯甲酯)(PBLG)-聚氧化乙烯(PEO)嵌段共聚物(PBLG-b-PEO)在水中的自组装性能,发现PBLG-b-PEO在水  相似文献   

14.
聚甲基丙烯酸甲酯接枝聚氧乙烯共聚物溶液性质的研究   总被引:3,自引:0,他引:3  
采用核磁共振 (NMR)、动态激光光散射 (DLS)、透射电子显微镜 (TEM )等方法研究了规整性聚甲基丙烯酸甲酯接枝聚氧乙烯共聚物溶液性质 ,研究表明两亲接枝共聚物在选择性溶剂中可形成球状胶束 ,溶液的浓度、温度和聚合物结构等因素影响其胶束的大小、形态  相似文献   

15.
聚甲基丙烯酸甲酯接枝聚氧乙烯在甲苯中的聚集态结构   总被引:1,自引:0,他引:1  
两亲接枝共聚物;胶束;聚甲基丙烯酸甲酯接枝聚氧乙烯在甲苯中的聚集态结构  相似文献   

16.
The self-aggregation behavior of two amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer samples with nearly identical PHB block lengths but different PEO block lengths, PEO-PHB-PEO(2000-810-2000) and PEO-PHB-PEO(5000-780-5000), was studied with dynamic and static light scattering (DLS and SLS), in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). The formation of polymeric micelles by the two PEO-PHB-PEO triblock copolymers was confirmed with fluorescence technique and TEM. DLS analysis showed that the hydrodynamic radius (R(h)) of the monodistributed polymeric micelles increased with an increase in PEO block length. The relative thermostability of the triblock copolymer micelles was studied by SLS and DLS at different temperatures. The aggregation number and the ratio of the radius of gyration over hydrodynamic radius were found to be independent of temperature, probably due to the strong hydrophobicity of the PHB block. The combination of DLS and SLS studies indicated that the polymeric micelles were composed of a densely packed core of hydrophobic PHB blocks and a corona shell formed by hydrophilic PEO blocks. The aggregation numbers were found to be approximately 53 for PEO-PHB-PEO(2000-810-2000) micelles and approximately 37 for PEO-PHB-PEO(5000-780-5000) micelles. The morphology of PEO-PHB-PEO spherical micelles determined by DLS and SLS measurements was further confirmed by TEM.  相似文献   

17.
Poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PBLG-graft-PEG) copolymer was synthesized by the ester exchange reaction of the PBLG homopolymer with PEG. NMR spectroscopy was used to confirm the composition of the PBLG-graft-PEG copolymer. FTIR spectroscopy was used to characterize the chain conformation of polypeptide segments in the PBLG-graft-PEG copolymer in solid state. The self-assembly behavior of PBLG-graft-PEG and its mixtures with PBLG in ethanol were investigated by transmission electron microscopy (TEM) and viscometry. Experimental results showed that the PBLG-graft-PEG copolymer can self-assemble to form polymeric micelles with a core-shell structure of a thin shuttle-like shape. The introduction of the PBLG homopolymer into the mixed system not only decreases the critical micelle concentration (CMC) but also changes the morphology of the micelles from their shuttle-like shape to cylindrical shape. The effects of test temperature on the critical micelle concentration of PBLG-graft-PEG were also studied.  相似文献   

18.
Summary: Self‐association behaviors of poly(γ‐benzyl L ‐glutamate)‐graft‐poly(ethylene glycol) (PBLG‐graft‐PEG) and its mixtures with PBLG homopolymer in aqueous media were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and nuclear magnetic resonance (NMR) spectroscopy. It was revealed that PBLG‐graft‐PEG could self‐assemble to form polymeric micelles with a core‐shell structure in the shape of spindle. The introduction of PBLG homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.

The excitation fluorescence spectra of pyrene as a function of concentrations for the mixture of PBLG‐graft‐PEG with PBLG and a TEM image of the formed micelles.  相似文献   


19.
Block copolymers consisting of poly(γ-benzyl L -glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Core shell type nanoparticles of the block copolymers (abbreviated GEG) were prepared by the dialysis method. Under fluorescence spectroscopy measurement, the GEG block copolymers were associated in water to form core shell type nanoparticles as polymeric micelles and the critical micelle concentrations (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed nanoparticles of spherical shapes. From dynamic light scattering (DLS) study, sizes of nanoparticles of GEG-1 and GEG-2 copolymer were 64.3 ± 28.7 nm and 28.9 ± 7.0 nm. The drug-loading contents of GEG-1 and GEG-2 nanoparticles were 15.2 and 8.3 wt %, respectively. These results indicated that the drug-loading contents were dependent on PBLG chain length in the copolymer. Then, the longer the PBLG chain length, the more the drug-loading contents. Release of clonazepam (CNZ) from the nanoparticles was slower in higher loading contents of CNZ than lower loading contents due to the hydrophobic interaction between PBLG core and CNZ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 415–423, 1998  相似文献   

20.
According to the concept of green chemistry and sustainable development, a new biodegradable copolymer comprised of hydrophobic poly(l-lactide) (PLLA) segments and hydrophilic cellulose segment (cellulose-g-PLLA) was designed and synthesized. The structure of the copolymer was characterized by (1)H NMR, FT-IR, (13)C NMR, DSC and WAXD. The cytotoxicity study shows that cellulose-g-PLLA exhibits good biocompatibility. The copolymer can self-assemble into micelles in water with the hydrophobic PLLA segments at the cores of micelles and the hydrophilic cellulose segments as the outer shells. Transmission electron microscopy (TEM) shows that the micelles exhibit nanospheric morphology within a size range of 30-80nm. The drug loaded micelles formed by the copolymer in aqueous media show sustained drug release which indicates their potential applicability in drug carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号