首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional approach is applied to study the phase behavior of symmetric binary Lennard-Jones(12,6) mixtures in pillared slit-like pores. Our focus is in the evaluation of the first-order phase transitions in adsorbed phases and lines delimiting mixed and demixed adsorbed phases. The scenario of phase changes is sensitive to the pore width, to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters. The presence of pillars provides additional excluded volume effects, besides the confinement due to the pore walls. The effects of attraction between fluid species and pillars counteract this additional confinement. We have observed that both the increasing surface pillar density and the augmenting strength of fluid-solid interactions can qualitatively change the phase diagrams topology for the model with sufficiently strong trends for demixing. If the length of pillars is sufficiently large comparing to the pore width at low temperatures, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical points then are observed.  相似文献   

2.
A molecular model of adsorbate melting in slit-like pores [1] is used to calculate adsorption isotherms with regard to the contribution from vibrational motions of the adsorbate. The equations are based on discrete distribution functions (the lattice gas model). Molecular distributions are calculated in a quasi-chemical approximation reflecting the effects of direct correlations of interacting particles using the Lennard-Jones potential. The vibrational motion of molecules is taken into account using a modified quasi-dimer Mie model. It is shown that considering vibrations shifts the adsorption isotherms in the chemical potential-density coordinates to higher vapor pressures in the region of high filling. This is due to the need for additional compression of the vapor to transfer it into the adsorbed state with increased kinetic energy.  相似文献   

3.
4.
CO adsorption on four MoSx (stoichiometric and nonstoichiometric) clusters has been investigated by using density functional method. It is found that CO prefers adsorption on the coordinatively unsaturated (1010) surface. The adsorption energy of high coverage shows the additivity as compared with that of one CO adsorption, and there is no significant repulsive interaction between the end-on adsorbed CO probes. The computed CO stretching frequencies (2000-2080 cm(-1)) agree perfectly with the experimental data (a broad band centered at 2070 cm(-1) with a tail extent to 2000 cm(-1)). No bridged CO adsorption is favored energetically under high CO concentration, and this might explain the catalytic ability of MoSx for C1 products instead of higher hydrocarbons and alcohols.  相似文献   

5.
Density functional theory calculations are carried out for the adsorption of a chiral molecule, (S)- and (R)-HSCH(2)CHNH(2)CH(2)P(CH(3))(2), on a chiral surface, Au(17 11 9)(S)(). The S-enantiomer is found to bind more strongly than the R-enantiomer by 8.8 kJ/mol, evidencing that the chiral nature of the kink sites at the Au(17 11 9) surface leads to enantiospecific binding. The adsorption of two related chiral molecules, HSCH(2)CHNH(2)COOH ("cysteine") and HSCH(2)CHNH(2)CH(2)NH(2), does not, however, lead to enantiospecific binding. The results of the density functional calculations are broken down into a local binding model in which each of the chiral molecule's three contact points with the surface provides a contribution to the overall adsorption bond strength. The enantiospecific binding is demonstrated to originate from the simultaneous optimization of these three local bonds. In the model, the deformation energy costs of both the molecule and the surface are further included. The model reveals that the molecule may undergo large deformations in the attempt to optimize the three bonds, while the surface deforms to a lesser extent. The most favorable binding configurations of each enantiomer are, however, characterized by small deformation energies only, justifying a local binding picture.  相似文献   

6.
In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.  相似文献   

7.
We investigate the capillary condensation of two model fluid mixtures in slit-like pores, which exhibit different demixing properties in the bulk phase. The interactions between adsorbate particles are modeled by using Lennard-Jones (12,6) potentials and the adsorbing potentials are of the Lennard-Jones (9,3) type. The calculations are performed for different pore widths and at different concentrations of the bulk gas, by means of density functional theory. We evaluate the capillary phase diagrams and discuss their dependence on the parameters of the model. Our calculations indicate that a binary mixture confined to a slit-like pore may exhibit rich phase behavior.  相似文献   

8.
《中国化学快报》2021,32(9):2803-2806
In the field of volatile organic compounds (VOCs) pollution control, adsorption is one of the major control methods, and effective adsorbents are desired in this technology. In this work, the density functional theory (DFT) calculations are employed to investigate the adsorption of typical VOCs molecules on the two-dimensional material borophenes. The results demonstrate that both structure of χ3 and β12 borophene can chemically adsorb ethylene and formaldehyde with forming chemical bonds and releasing large energy. However, other VOCs, including ethane, methanol, formic acid, methyl chloride, benzene and toluene, are physically adsorbed with weak interaction. The analysis of density of states (DOS) reveals that the chemical adsorption changes the conductivity of borophenes, while the physical adsorption has no distinct effect on the conductivity. Therefore, both χ3 and β12 borophene are appropriate adsorbents for selective adsorption of ethylene and formaldehyde, and they also have potential in gas sensor applications due to the obvious conductivity change during the adsorption.  相似文献   

9.
10.
We have studied the adsorption of benzenethiol molecules on the Au(111) surface by using first principles total energy calculations. A single thiolate molecule is adsorbed at the bridge site slightly shifted toward the fcc-hollow site, and is tilted by 61 degrees from the surface normal. As for the self-assembled monolayer (SAM) structures, the (2 square root of 3 x square root of 3)R30 degrees herringbone structure is stabilized against the (square root 3 x square root 3)R30 degrees structure by large steric relaxation. In the most stable (2 square root 3 x square root 3)R30 degrees SAM structure, the molecule is adsorbed at the bridge site with the tilting angle of 21 degrees, which is much smaller compared with the single molecule adsorption. The van der Waals interaction plays an important role in forming the SAM structure. The adsorption of benzenethiolates induces the repulsive interaction between surface Au atoms, which facilitates the formation of surface Au vacancy.  相似文献   

11.
The objective of the present study is to identify possible adsorption configurations of pyrrole on Mo(110) using density functional theory (DFT) calculations. Several adsorption configurations were studied including pyrrole and pyrrolyl adsorption as parallel, perpendicular, and tilted adsorption modes relative to the Mo(110) surface plane. Based on the DFT calculations, pyrrole is suggested to adsorb in a parallel mode with respect to the Mo(110) surface through its pi-orbital as mu3,eta(5)-Pyr-0 degrees with an adsorption energy of -28.7 to -31.5 kcal mol(-1). The possibility of a coexisting mode where pyrrole adsorbs on the surface with a slightly tilted molecular plane as mu3,eta(4)(N,C2,C3,C4)-Pyr-5 degrees is also likely to occur, particularly at higher pyrrole coverages. The slightly tilted configuration is suggested to arise from the lateral interactions of adsorbed pyrrole on Mo(110), and not the result of a phase transformation on the surface since this requires a relatively high activation energy as indicated by additional linear synchronous transit (LST)/quadratic synchronous transit (QST) calculations. Both adsorption geometries bond to three surface Mo atoms, and Mo(110) did not promote hydrogen abstraction. Pyrrolyl adsorption on Mo(110) is energetically possible, but unlikely to occur because gas-phase hydrogen has not been previously experimentally observed as a pyrrole decomposition product on Mo(110).  相似文献   

12.
We present a novel quenched solid density functional theory (QSDFT) model of adsorption on heterogeneous surfaces and porous solids, which accounts for the effects of surface roughness and microporosity. Within QSDFT, solid atoms are considered as quenched component(s) of the solid-fluid system with given density distribution(s). Solid-fluid intermolecular interactions are split into hard-sphere repulsive and mean-field attractive parts. The former are treated with the multicomponent fundamental measure density functional. Capabilities of QSDFT are demonstrated by drawing on the example of adsorption on amorphous silica materials. We show that, using established intermolecular potentials and a realistic model for silica surfaces, QSDFT quantitatively describes adsorption/desorption isotherms of Ar and Kr on reference MCM-41, SBA-15, and LiChrosphere materials in a wide range of relative pressures. QSDFT offers a systematic approach to the practical problems of characterization of microporous, mesoporous, and amorphous silica materials, including an assessment of microporosity, surface roughness, and adsorption deformation. Predictions for the pore diameter and the extent of pore surface roughness in MCM-41 and SBA-15 materials are in very good agreement with recent X-ray diffraction studies.  相似文献   

13.
We propose a density functional theory to describe adsorption of Lennard-Jones fluid in slitlike pores modified by chain molecules. Specifically, the chains are bonded by their ends to the opposite pore walls, so they can form pillaredlike structure. Two models are studied. In the first model, the nonterminating segments of chains can change their configuration inside the pore upon adsorption of spherical species. In the second model, the chains configuration remains fixed, so that the system is similar to a nonuniform quenched-annealed mixture. We study capillary condensation of fluid species inside such modified pores and compare the results obtained for two models.  相似文献   

14.
Density functional theory is applied to study properties of fully detailed, realistic models of polyethylene liquids near surfaces and compared to results from Monte Carlo simulations. When the direct correlation functions from polymer reference interaction site model (PRISM) theory are used as input, the theory somewhat underpredicts the density oscillations near the surface. However, good agreement with simulation is obtained with empirical scaling of the PRISM-predicted direct correlation functions. Effects of attractive interactions are treated using the random-phase approximation. The results of theoretical predictions for the attractive system are also in reasonable agreement with simulation results. In general, the theory performs best when the wall-polymer interaction strength is comparable to polymer-polymer interactions.  相似文献   

15.
We propose a microscopic density functional theory to describe nonuniform ionic fluids composed of chain molecules with charged "heads" and spherical counterions. The chain molecules are modeled as freely jointed chains of hard spheres, the counterions are oppositely charged spheres of the same diameter as all segments of chain molecules. The theory is based on the approach of Yu and Wu [J. Chem. Phys. 117, 2368 (2002)] of adsorption of chain molecules and on theory of adsorption of electrolytes [O. Pizio, A. Patrykiejew, and S. Sokolowski, J. Chem. Phys. 121, 11957 (2004)]. As an application of the proposed formalism we investigate the structure and adsorption of fluids containing segments of different length in a slitlike pore.  相似文献   

16.
The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η2-(C,O)-di-σ four-membered ring adsorption conformation on the Fe-top site was found to be the most favorable structure with the predicted adsorption energy of 210.7 kJ/mol. The analysis of density of states, Mulliken population, and vibrational frequencies before and after adsorption showed clear weakening of the carbonyl bond, and high sp3 charact...  相似文献   

17.
A systematic density functional theory study has been carried out on the structure and stability of triangular molybdenum sulfide (MoS(x)()) models. On the basis of the structural and energetic comparison, the triangle Mo(28)S(84) (VII) cluster has been identified as a reasonable structure for triangular MoS(x)() model. Under reductive atmosphere, the most stable structure has bridging sulfur on edge sites and two H(2)S at each corner site. It is found that CO adsorption at the corner site represents the most stable conformation. Along with other stretching modes, the computed frequency at 2102 cm(-1) for CO at the corner agrees perfectly with the experimental observation.  相似文献   

18.
19.
20.
A grand canonical Monte Carlo (GCMC) method is carried out to determine optimum adsorptive storage pressures of supercritical methane in pillared layered pores. In the simulation, the pillared layered pore is modeled by a uniform distribution of pillars between two solid walls. Methane is described as a spherical Lennard-Jones molecule, and Steele's 10-4-3 potential is used for representing the interaction between the fluid and a layered wall. The site-site interaction is also used for calculating the interaction energy between methane molecules and pillars. An effective potential model that reflects the characteristics of a real pillared layered material is proposed here. In the model, a binary interaction parameter, k(fw), is introduced into the combining rule for the cross-energy parameter for the interaction between the fluid and a layered wall. Based on the experimental results for the Zr-pillared material synthesized and characterized by Boksh, Kikkinides, and Yang, the binary interaction parameter, k(fw), is determined by fitting the simulation results to the experimental adsorption data of nitrogen at 77 K. Then, by taking it as a model of pillared layered material, a series of GCMC simulations have been carried out. The excess adsorption isotherms of methane in a pillared layered pore with three different pore widths and porosities are obtained at three supercritical temperatures T=207.3, 237.0, and 266.6 K. Based on the simulation results at different porosities, various pore widths and different supercritical temperatures, the pillared layered pore with porosity psi=0.94 and pore width hsigma(p)=1.02 nm is recommended as adsorption storage material of supercritical methane. Moreover, the optimum adsorption pressure is determined at a given temperature and a fixed width of the pillared layered pore. For example, at temperature T=207.3 K, the optimum adsorption pressures are 3.1, 3.7, and 4.5 M Pa at H=1.02, 1.70, and 2.38 nm, respectively. In summary, the GCMC method is a useful tool for optimizing adsorption storage of supercritical methane in pillared layered material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号