首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subsolidus region of the ternary salt system Tl2MoO4-Fe2(MoO4)3-Hf(MoO4)2 was studied by X-ray powder diffraction. New compounds Tl5FeHf(MoO4)6 (5: 1: 2) and Tl(Fe,Hf0.5)(MoO4)3 (1: 1: 1). were found to be formed in this system. Crystals of new ternary molybdate of the composition Tl(FeHf0.5)(MoO4)3 were grown by spontaneous flux crystallization. Its composition and crystal structure were refined based on X-ray diffraction data. The mixed three-dimensional framework of the crystal structure is composed of Mo tetrahedra sharing O vertices with (Fe,Hf)O6 octahedra. The thallium atoms occupy wide channels in the framework.  相似文献   

2.
The Tl2MoO4-Nd2(MoO4)3-Hf(MoO4)2 system was studied in the subsolidus region using X-ray powder diffraction. New triple molybdates were found to exist in this system: Tl5NdHf(MoO4)6 (5: 1: 2), TlNdHf0.5(MoO4)3 (1: 1: 1), and Tl2NdHf2(MoO4)6.5 (2: 1: 4). The first TlNd(MoO4)2 single crystals were grown from melt solutions with spontaneous nucleation. Their crystal structure was refined from X-ray diffraction data (Bruker X8 Apex automated diffractometer, MoK α radiation, 386 F(hkl), R = 0.0136). The tetragonal unit cell parameters are as follows: a = 6.3000(2) Å, c = 9.5188(5) Å, V = 377.80(3) Å3, Z = 2, ρcalcd = 5.876 g/cm3, space group P4/nnc. The structure is a framework built of NdO8 and TlO8 tetragonal antiprisms linked via shared lateral edges and alternating in the checkerboard order. Layers share oxygen vertices with MoO4 interlayer tetrahedra and are linked into the framework.  相似文献   

3.
The ternary thallium chalcogenides of the general formula Tl(4)MQ(4) (M = Zr or Hf; Q = S or Se) were obtained from high-temperature reactions without air. These sulfides and selenides are isostructural, crystallizing in the triclinic system with space group P1 and Z = 5, in contrast to Tl(4)MTe(4) compounds that adopt space group R3. The unit cell parameters for Tl(4)ZrS(4) are as follows: a = 9.0370(5) ?, b = 9.0375(5) ?, c = 15.4946(9) ?, α = 103.871(1)°, β = 105.028(1)°, γ = 90.138(1)°, and V = 1183.7(1) ?(3). In contrast to the corresponding tellurides, the sulfides and selenides exhibit edge-shared MQ(6) octahedra, propagating along the c axis in a zigzag manner. All elements occur in the most common oxidation states, according to the formulation (Tl(+))(4)M(4+)(Q(2-))(4). Electronic structure calculations predict energy band gaps of 1.7 eV for Tl(4)ZrS(4) and 1.3 eV for Tl(4)ZrSe(4), which are in accordance with the large resistivity values observed experimentally.  相似文献   

4.
The systems Cs2MoO4?R2(MoO4)3?Zr(MoO4)2, where R = Al, Sc, or In, have been investigated in the subsolidus region by X-ray powder diffraction. Quasi-binary joins have been revealed, and triangulation has been carried out. Six new triple molybdates have been prepared with the component ratio equal to 1 : 1 : 1 (mol/mol) (S 1) and 5 : 1 : 2 (S 2). The crystal parameters for the 5 : 1 : 2 compounds have been determined, and the electrical properties of the 1 : 1 : 1 compounds have been investigated.  相似文献   

5.
A series of MVO(SO4)2 vanadium complexes, where M = Rb, Cs, or Tl, were prepared, and their crystal structures and physicochemical properties studied. The rubidium and thallium compounds of this series were found to be isostructural to each other and to crystallize, like KVO(SO4)2 and NH4VO(SO4)2, in orthorhombic system (space group P212121, No. 19, Z = 4) with the unit cell parameters a = 4.9735(2) Å, b=8.7894(4) Å, c = 16.6968(8) Å, V = 729.88 Å3 (Rb); and a = 4.9636(1) Å, b = 8.7399(2) Å, c = 16.8598(4) Å, V = 731.39 Å3 (Tl). The cesium compound was found to crystallize in monoclinic system (space group P21/a, No. 14-2, Z = 4): a = 10.0968(6) Å, b = 8.9131(4) Å, c = 9.8675(5) Å, β = 114.640(2)°, V = 807.16 Å3. The MVO(SO4)2 crystal structure is built of VO6 octahedra, which are linked into layers by bridging SO4 groups. At the apex of each VO6 octahedron, there is a short V-O terminal bond having a length of 1.54(1) Å (Rb), 1.57(2) Å (Tl), and 1.52(4) Å (Cs).  相似文献   

6.
The systems Rb2MoO4-R2(MoO4)3-Hf(MoO4)2 have been investigated in the subsolidus region by X-ray powder diffraction, DTA, and IR spectroscopy. Triple molybdates of the composition 5: 1: 2 are formed in the systems with R = Al, In, Sc, and Fe. Molybdates of composition 5: 1: 3 and 1: 1: 1 are found in the iron(III)-containing system in addition to the 5: 1: 2 molybdate. Single crystals of the double molybdate RbFe(MoO4)2, which is formed in the Rb2MoO4-Fe2(MoO4)3 system, have been grown. The structure of this double molybdate has been refined using X-ray diffraction data (X8 APEX automated diffractometer, MoK α radiation, 373 F(hkl), R = 0.0287). The trigonal unit cell parameters are the following: a = b = 5.6655(2) Å, c = 7.5061(4) Å, V = 208.65(1) Å3, Z = 1, ρcalc = 3.670 g/cm3, space group R3m1. The structure is formed by layers of FeO6 octahedra sharing corners with MoO4 tetrahedra and RbO12 icosahedra.  相似文献   

7.
The subsolidus region of the Rb2MoO4-Er2(MoO4)3-Hf(MoO4)2 ternary salt system is studied using X-ray powder diffraction. A novel 5: 1: 2 triple molybdate, Rb5ErHf(MoO4)6, is found to form in the system. Crystals of Rb5ErHf(MoO4)6 are flux-grown under spontaneous nucleation conditions. The composition and crystal structure of Rb5ErHf(MoO4)6 are refined in a single-crystal X-ray diffraction experiment (X8 APEX diffractometer, MoK α radiation, 1753 reflections, R = 0.0183). The crystals are trigonal; a = 10.7511(1) Å, c = 38.6543(7) Å, V = 3869.31(9) Å3, d calc = 4.462 g/cm3, Z = 6, space group $R\bar 3c$ . The mixed three-dimensional framework of the structure is formed of MoO4 tetrahedra, each sharing corners with two ErO6 and HfO6 octahedra. Two types of Rb atoms occupy large cavities of the framework. The distribution of the Er3+ and Hf4+ cation over two positions is refined in the course of structure solution.  相似文献   

8.
The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) Å, V = 4138.4(4) Å3, Z = 6, space group R $ \bar 3 The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) ?, V = 4138.4(4) ?3, Z = 6, space group R c. The mixed-metal three-dimensional framework in this structure is built of Mo tetrahedra and two sorts of (Bi,Zr)O6 octahedra. Large interstices accommodate two sorts of cesium atoms. The Bi3+ and Zr4+ cation distributions over two positions were refined during structure solution. Original Russian Text ? B.G. Bazarov, T.V. Namsaraeva, R.F. Klevtsova, A.G. Anshits, T.A. Vereshchagina, R.V. Kurbatov, L.A. Glinskaya, K.N. Fedorov, Zh.G. Bazarova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1585–1589.  相似文献   

9.
Metallocene dichlorides (RCp)2MCl2 (M = Zr, Hf; R = H, t-Bu) react with E/2HLiBEt3 (E = S, Se) to give the symmetrical dinuclear compounds [(RCp)2M(μ-E)]2. UV irradiation in toluene of [(t-BuCp)2Zr(CH3)]2(μ-O) in the presence of powdered sulfur or gray selenium gives the new compounds [(t-BuCp)2Zr2](μ-O)(μ-E).  相似文献   

10.
Phase equilibria in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M = Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb2MoO4-Cr2(MoO4)3-Zr(MoO4)2 system with the molar ratios of the starting components equal to 5: 1: 1 (S 2) and 1: 1: 1 (S 1). Proceeding from that the isostructurality of Rb5FeHf(MoO4)6 and S 2 the unit cell, parameters are determined for S 2.  相似文献   

11.
Single crystals of molybdate Tl2Mg2(MoO4)3 are grown, and its crystal structure is refined in an X-ray diffraction experiment (an automated diffractometer, MoK α radiation, 914 F(hkl) reflections, R = 0.0459). The crystal are cubic with a = b = c = 10.700(1) Å, V = 1225.0(2) Å3, Z = 4, space group P213. The mixed 3D framework of the structure is built of MoO4 tetrahedra and two types of corner-sharing MgO6 octahedra. Two types of thallium atoms occupy large interstices.  相似文献   

12.
High-purity syntheses are reported for a series of first, second, and third row transition metal and actinide hexahalide compounds with equivalent, noncoordinating countercations: (Ph(4)P)(2)TiF(6) (1) and (Ph(4)P)(2)MCl(6) (M = Ti, Zr, Hf, Th, U, Np, Pu; 2-8). While a reaction between MCl(4) (M = Zr, Hf, U) and 2 equiv of Ph(4)PCl provided 3, 4, and 6, syntheses for 1, 2, 5, 7, and 8 required multistep procedures. For example, a cation exchange reaction with Ph(4)PCl and (NH(4))(2)TiF(6) produced 1, which was used in a subsequent anion exchange reaction with Me(3)SiCl to synthesize 2. For 5, 7, and 8, synthetic routes starting with aqueous actinide precursors were developed that circumvented any need for anhydrous Th, Np, or Pu starting materials. The solid-state geometries, bond distances and angles for isolated ThCl(6)(2-), NpCl(6)(2-), and PuCl(6)(2-) anions with noncoordinating counter cations were determined for the first time in the X-ray crystal structures of 5, 7, and 8. Solution phase and solid-state diffuse reflectance spectra were also used to characterize 7 and 8. Transition metal MCl(6)(2-) anions showed the anticipated increase in M-Cl bond distances when changing from M = Ti to Zr, and then a decrease from Zr to Hf. The M-Cl bond distances also decreased from M = Th to U, Np, and Pu. Ionic radii can be used to predict average M-Cl bond distances with reasonable accuracy, which supports a principally ionic model of bonding for each of the (Ph(4)P)(2)MCl(6) complexes.  相似文献   

13.
Single crystals of Li8Bi2(MoO4)7 were synthesized; the composition and crystal structure of this compound were determined from X-ray diffraction data (CAD-4 automatic diffractometer, MoKa radiation, 1767 reflections, R = 0.031). The parameters of the tetragonal unit cell are as follows: a = 21.130, c = 5.287 Å, Z = 4, space group -14. The structure of the binary molybdate is a three-dimensional mixed framework of MoO4 tetrahedra of four varieties, Bi eight-vertex potyhedra, and Li(l)O6 and Li(2)O6 octahedra. The large channels of the framework along the c axis contain MoO4 tetrahedra of the fifth variety with Li(3)O4 and Li(4)O4 tetrahedra attached to them via common vertices and forming four symmetrically related chains of pyroxene type. The structure of Li8Bi2(MoO4)7 involves structural fragments of Li3Fe(MoO4)3 and a-RbPr(MoO4)2 and is a new structural type in the class of binary molybdates and tungstates of uniand trivalent metals.  相似文献   

14.
We have synthesized new compounds of the formula Tl(2)MQ(3), with M = Zr and Hf and Q = S and Se, and studied their crystallographic features, electronic structures and electrical conductivity. These isostructural compounds crystallize in the monoclinic space group P2(1)/m (Z = 2), with unit cell parameters for the representative Tl(2)ZrS(3) of a = 7.9159(10) ?, b = 3.7651(5) ?, c = 10.275(2) ?, and β = 97.476(2)°. The Zr atoms of Tl(2)ZrS(3) are (distorted) octahedrally coordinated by the S atoms, with two such octahedra sharing edges along the c axis and forming infinite double chains running parallel to the b axis. Tl atoms separate these chains from one another along the a and c axes. The Tl atoms are also surrounded by S atoms in a distorted octahedral coordination. The structure may be viewed as alternating layers of Zr/Tl atoms and S atoms, and is therefore a distorted, ordered variant of the α-NaFeO(2) structure type. All atoms are in their standard oxidation states: Tl(+), Zr(4+), S(2-). The sulphide Tl(2)ZrS(3) has a calculated band gap of 1.15 eV, and the selenide Tl(2)HfSe(3) a gap of 0.57 eV. The electrical conductivity values of Tl(2)ZrS(3) and Tl(2)HfSe(3) at room temperature are 7.1 × 10(-6)Ω(-1) cm(-1) and 3.9 × 10(-3)Ω(-1) cm(-1), respectively.  相似文献   

15.
The attempt to prepare hitherto unknown homopolyatomic cations of sulfur by the reaction of elemental sulfur with blue S8(AsF6)2 in liquid SO2/SO2ClF, led to red (in transmitted light) crystals identified crystallographically as S8(AsF6)2. The X-ray structure of this salt was redetermined with improved resolution and corrected for librational motion: monoclinic, space group P2(1)/c (No. 14), Z = 8, a = 14.986(2) A, b = 13.396(2) A, c = 16.351(2) A, beta = 108.12(1) degrees. The gas phase structures of E8(2+) and neutral E8 (E = S, Se) were examined by ab initio methods (B3PW91, MPW1PW91) leading to delta fH theta[S8(2+), g] = 2151 kJ/mol and delta fH theta[Se8(2+), g] = 2071 kJ/mol. The observed solid state structures of S8(2+) and Se8(2+) with the unusually long transannular bonds of 2.8-2.9 A were reproduced computationally for the first time, and the E8(2+) dications were shown to be unstable toward all stoichiometrically possible dissociation products En+ and/or E4(2+) [n = 2-7, exothermic by 21-207 kJ/mol (E = S), 6-151 kJ/mol (E = Se)]. Lattice potential energies of the hexafluoroarsenate salts of the latter cations were estimated showing that S8(AsF6)2 [Se8(AsF6)2] is lattice stabilized in the solid state relative to the corresponding AsF6- salts of the stoichiometrically possible dissociation products by at least 116 [204] kJ/mol. The fluoride ion affinity of AsF5(g) was calculated to be 430.5 +/- 5.5 kJ/mol [average B3PW91 and MPW1PW91 with the 6-311 + G(3df) basis set]. The experimental and calculated FT-Raman spectra of E8(AsF6)2 are in good agreement and show the presence of a cross ring vibration with an experimental (calculated, scaled) stretching frequency of 282 (292) cm-1 for S8(2+) and 130 (133) cm-1 for Se8(2+). An atoms in molecules analysis (AIM) of E8(2+) (E = S, Se) gave eight bond critical points between ring atoms and a ninth transannular (E3-E7) bond critical point, as well as three ring and one cage critical points. The cage bonding was supported by a natural bond orbital (NBO) analysis which showed, in addition to the E8 sigma-bonded framework, weak pi bonding around the ring as well as numerous other weak interactions, the strongest of which is the weak transannular E3-E7 [2.86 A (S8(2+), 2.91 A (Se8(2+)] bond. The positive charge is delocalized over all atoms, decreasing the Coulombic repulsion between positively charged atoms relative to that in the less stable S8-like exo-exo E8(2+) isomer. The overall geometry was accounted for by the Wade-Mingos rules, further supporting the case for cage bonding. The bonding in Te8(2+) is similar, but with a stronger transannular E3-E7 (E = Te) bonding. The bonding in E8(2+) (E = S, Se, Te) can also be understood in terms of a sigma-bonded E8 framework with additional bonding and charge delocalization occurring by a combination of transannular n pi *-n pi * (n = 3, 4, 5), and np2-->n sigma * bonding. The classically bonded S8(2+) (Se8(2+) dication containing a short transannular S(+)-S+ (Se(+)-Se+) bond of 2.20 (2.57) A is 29 (6) kJ/mol higher in energy than the observed structure in which the positive charge is delocalized over all eight chalcogen atoms.  相似文献   

16.
Li6Zr2O7 was obtained by annealing an intimate mixture of LiOH · H2O and freshly prepared ZrO2 in a stream of argon. It is monoclinic: C2/c, a = 1 044.5(1), b = 598.9(1), c = 1 020.0(1) pm, β = 100.26(1)°, Z = 4, R = 0.016 for 1 218 F values and 55 variables. The structure is closely related to that of NaCl with an ordered distribution of the metal atoms on the sodium sites while the oxygen atoms occupy seven eighths of the chlorine positions. Li has square pyramidal, Zr octahedral oxygen coordination. The corresponding Hf compound is isotypic: a = 1 040.2(1), b = 596,2(1), c = 1 015.0(1) pm, β = 100.36(1)°. 7Li nuclear magnetic resonance spectra of this compound give no indication for a high mobility of the Li+ ions.  相似文献   

17.
18.
The incorporation of transition-metal oxides into silica can give materials with useful optical, electronic or catalytic properties. For example, ZrO2-SiO2 and HfO2-SiO2 materials are of interest due to their high dielectric constants. Here we present a comparison of extended X-ray absorption fine structure and small-angle X-ray scattering results for acid-catalysed binary (MO2) x (SiO2)1 – x (M = Ti, Zr or Hf) xerogels, with x up to 0.4 and heat treatments up to 750°C. Detailed observations for TiO2-SiO2 and ZrO2-SiO2 xerogels provide a basis for interpretation of new results for HfO2-SiO2 xerogels. At low concentrations metal atoms are homogeneously incorporated into the silica network. Ti adopts coordinations of 4 or 6, and Zr and Hf both adopt higher coordination of 6 or 7 (the larger coordinations being due to ambient moisture). At higher concentrations, phase separation of metal oxide occurs. Such regions become clearly separated from the silica network for TiO2, but remain very finely mixed with silica network for ZrO2 and HfO2.  相似文献   

19.
20.
Subsolidus phase formation in K2MoO4-SrMoO4-R2(MoO4)3 systems, where R = Pr, Nd, Sm, Eu, and Gd, in which KSrR(MoO4)3 triple molybdates are formed and crystallize in monoclinic crystal system (space group P21/n), have been studied using X-ray powder diffraction, differential thermal analysis (DTA), and vibrational spectroscopy. Unit cell parameters have been determined for these molybdates; their IR and Raman spectra are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号