首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Construction of starburst C60(>DPAF-C9)4 pentads was coupled with the use of highly fluorescent diphenylaminofluorene-C9 (DPAF-C9) addends as donor components in conjunction with the fullerene acceptor during single-photon excitation processes. High quantum yields (PhiCS) of charge-separation processes in the range 0.83-0.90 for C60(>DPAF-C9)n (n = 1, 2, or 4) were obtained in the formation of C60*-(>DPAF*+-C9)(>DPAF-C9)n-1 transient states. The lifetime of the radical ion-pairs (tauRIP) was found to be 900 ns for starburst C60(>DPAF-C9)4 (3) samples, which is 6-fold longer than that of the linear analogue C60(>DPAF-C9) (1), with a ca. 2 times increase of the charge-separation rate (kCS) compared to that of 1. These data implied the important role of sterically hindered DPAF-C9 pendants arranged in a starburst-like environment that encapsulates the central C60 core on extending the tauRIP. We interpreted the phenomena by the occurrence of intramolecular migration or exchange of electron or positive charge among multiple DPAF-C9 pendants of C60*-(>DPAF*+-C9)(>DPAF-C9)n-1, which gives an increased rate in charge generation and delayed charge recombination.  相似文献   

2.
Supramolecular porphyrin self-assemblies have been prepared from butadiyne-linked bis(imidazolylporphyrin) by complementary coordination of imidazole to zinc, and their two-photon absorption (2PA) and higher-order nonlinear absorption properties were investigated over femtosecond time scales using an open-aperture Z-scan method. The self-assembled porphyrin dimer of the conjugated monozinc bisporphyrin 7D was shown to have a large 2PA cross section (7.6 x 10(3) GM, where 1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at 887 nm. By comparison of this result with that for a meso-meso-linked porphyrin array without the butadiyne connection (3.7 x 10(2) GM at 964 nm), it was demonstrated that the predominant factor in this significant enhancement of the cross section was the expansion of porphyrin-porphyrin pi-conjugation. Self-coordination and monozinc metalation were also found to be contributing factors. Furthermore, a novel self-assembled porphyrin polymer 8P consisting of a biszinc complex with a mean molecular weight of M(n) = 1.5 x 10(5) Da was shown to exhibit an extraordinarily large two-photon absorption cross section (4.4 x 10(5) GM at 873 nm). Nanosecond Z-scan experiments for 7D and 8P were also undertaken and resulted in the measurement of large effective 2PA cross sections, including the excited-state absorption (2.1 x 10(5) GM for 7D and 2.2 x 10(7) GM for 8P, respectively). Finally, three-photon absorption was observed by femtosecond Z-scan experiments at 1188 nm (7.1 x 10(-89) m(6) s(2)) and 1282 nm (1.8 x 10(-89) m(6) s(2)), an observation which is the first of its kind in porphyrin chemistry.  相似文献   

3.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

4.
We demonstrated the strategy of a nanocomposite design by the incorporation of both a delocalized π-electrons system in a closely bound acceptor-donor analogue chromophore, based on charge-polarizable C(60)(>DPAF-C(9)) nanostructure 1, and spin-polarized d-electrons in the form of γ-FeO(x) nanoparticles. Facile intramolecular electron transfer from the DPAF-C(9) donor moiety to the C(60) acceptor cage of 1 upon activation to the excited state with a long lifetime of the charge-separated state forms a possible mechanism to integrate semiconducting and magnetic properties in a single system. We observed an appreciable magnetocurrent (MC) of C(60)(>DPAF-C(9))-encapsulated magnetic γ-FeO(x) nanoparticles in PMMA matrix upon applying a magnetic field from 0 to 300 mT at either 77 K (12% MC) or 300 K (4.5% MC). Interestingly, the detailed analysis of magnetocurrent curve profiles taken at 77 K allowed us to conclude that the measured magnetocurrent may be attributed to the contributions from magnetic field-dependent excited-state populations in semiconducting structure (density-based MC), magnetism from magnetic structure (mobility-based MC), and product of density and mobility-based MC components (π-d electronic coupling). At the higher temperature region up to 300 K, the semiconducting mechanism dominated the determining factor of measured magnetocurrent. This experimental observation indicated the feasibility of combining delocalized π electrons and spin-polarized d electrons through charge transfer to induce internally coupled dual mobility- and density-based MC through the modulation of spin polarization and excited states in semiconducting/magnetic hybrid materials.  相似文献   

5.
We demonstrated ultrafast femtosecond nonlinear optical (NLO) absorption characteristics of bilayered fullerosome vesicle nanostructures derived from molecular self-assembly of amphiphilic oligo(ethylene glycolated) C(60)-(light-harvesting diphenylaminofluorene antenna). Fullerene conjugates were designed to enhance photoresponse in a femtosecond time scale by applying an isomerizable periconjugation linker between the C(60) cage and diphenylaminofluorene antenna subunit in an intramolecular contact distance of only < 3.0 ?. Morphology of C(60)(>DPAF-EG(12)C(1))-based fullerosome nanovesicles in H(2)O was characterized to consist of a bilayered shell with a sphere diameter of 20-70 nm and a chromophore shell-width of 9.0-10 nm, fitting well with a head-to-head packing configuration of the molecular length. At the estimated effective nanovesicle concentration as low as 5.5 × 10(-8) MV (molecular molar concentration of 5.0 × 10(-4) M) in H(2)O, two-photon absorption (2PA) phenomena were found to be the dominating photophysical events showing a large molar concentration-insensitive 2PA cross-section value equivalent to 8500 GM in a form of nanovesicles, on average. The observed NLO characteristics led to a sharp trend of efficient light-transmittance intensity reduction at the input laser intensity above 100 GW/cm(2).  相似文献   

6.
Two‐photon stimulated emission depletion (STED) cross sections were determined over a broad spectral range for a novel two‐photon absorbing organic molecule, representing the first such report. The synthesis, comprehensive linear photophysical, two‐photon absorption (2PA), and stimulated emission properties of a new fluorene‐based compound, (E)‐2‐{3‐[2‐(7‐(diphenylamino)‐9,9‐diethyl‐9H‐fluoren‐2‐yl)vinyl]‐5‐methyl‐4‐oxocyclohexa‐2,5‐dienylidene} malononitrile ( 1 ), are presented. Linear spectral parameters, including excitation anisotropy and fluorescence lifetimes, were obtained over a broad range of organic solvents at room temperature. The degenerate two‐photon absorption (2PA) spectrum of 1 was determined with a combination of the direct open‐aperture Z‐scan and relative two‐photon‐induced fluorescence methods using 1 kHz femtosecond excitation. The maximum value of the 2PA cross section ~1700 GM was observed in the main, long wavelength, one‐photon absorption band. One‐ and two‐photon stimulated emission spectra of 1 were obtained over a broad spectral range using a femtosecond pump–probe technique, resulting in relatively high two‐photon stimulated emission depletion cross sections (~1200 GM). A potential application of 1 in bioimaging was demonstrated through one‐ and two‐photon fluorescence microscopy images of HCT 116 cells incubated with micelle‐encapsulated dye.  相似文献   

7.
Ji L  Fang Q  Yuan MS  Liu ZQ  Shen YX  Chen HF 《Organic letters》2010,12(22):5192-5195
Bridging the triindole core and triarylboryl acceptor by an ethenylene linker at the 3,8,13- or 2,7,12-position, the resultant 3-BET and 2-BET show two-photon absorption (TPA) cross sections of δ = 2100 and 2500 GM (at 810 nm by femtosecond pulses in THF), respectively. The TPA enhancement of the 2,7,12-isomers is also found when comparing 3-BYT and 2-BYT (δ = 870 and 1900 GM) and 3-NET and 2-NET (36 and 400 GM).  相似文献   

8.
Novel covalent fullerene C(60)-perylene-3,4:9,10-bis(dicarboximide) (C(60)-PDI) dyads (1-4) were synthesized and characterized. Their electrochemical and photophysical properties were investigated. Electrochemical studies show that the reduction potential of PDI can be tuned relative to C(60) by molecular engineering through altering the substituents on the PDI bay region. It was demonstrated using steady-state and time-resolved spectroscopy that a quantitative, photoinduced energy transfer takes place from the PDI moiety, acting as a light-harvesting antenna, to the C(60) unit, playing the role of energy acceptor. The bay-substitution (tetrachloro [1 and 2] or tetra-tert-butylphenoxy [3 and 4]) of the PDI antenna and the linkage length (C(2) [1 and 3] or C(5) [2 and 4]) to the C(60) acceptor are important parameters in the kinetics of energy transfer. Femtosecond transient absorption spectroscopy indicates singlet-singlet energy-transfer times (from the PDI to the C(60) unit) of 0.4 and 5 ps (1), 4.5 and 27 ps (2), 0.8 and 12 ps (3), and 7 and 50 ps (4), these values being ascribed to two different conformers for each C(60)-PDI system. Subsequent triplet-triplet energy-transfer times (from the C(60) unit to the PDI) are slower and in the order of 0.8 ns (1), 6.2 ns (2), 2.7 ns (3), and 9 ns (4). Nanosecond transient absorption spectroscopy of final PDI triplet states show a marked influence of the bay substitution (tetrachloro- or tetra-tert-butylphenoxy), and triplet-state lifetimes (10-20 micros) and the PDI triplet quantum yields (0.75-0.52) were estimated. The spectroscopy showed no substantial solvent effect upon comparing toluene (non-polar) to benzonitrile (polar), indicating that no electron transfer is occurring in these systems.  相似文献   

9.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

10.
A platinum complex with the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridinyl ligand (1) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low-lying excited electronic states. Complex 1 exhibits intense structured (1)π-π* absorption at λ(abs)<440?nm, and a broad, moderate (1)MLCT/(1)LLCT transition at 440-520?nm in CH(2)Cl(2) solution. A structured (3)π-π*/(3)MLCT emission at about 590?nm was observed at room temperature and at 77?K. Complex 1 exhibits both singlet and triplet excited-state absorption from 450?nm to 750?nm, which are tentatively attributed to the (1)π-π* and (3)π-π* excited states of the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridine ligand, respectively. Z-scan experiments were conducted by using ns and ps pulses at 532?nm, and ps pulses at a variety of visible and near-IR wavelengths. The experimental data were fitted by a five-level model by using the excited-state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited-state absorption cross sections in the visible spectral region and the effective two-photon absorption cross sections in the near-IR region. Our results demonstrate that 1 possesses large ratios of excited-state absorption cross sections relative to that of the ground-state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH(2)Cl(2) solution illuminated by ns laser pulses at 532?nm. The two-photon absorption cross sections in the near-IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two-photon-assisted excited-state absorption in the near-IR region.  相似文献   

11.
Herein the synthesis, spectroscopic characterization, two‐photon absorption and electrochemical properties of 3,6‐disubstituted carbazole tweezers is reported. A dimer resulting from a Glaser homocoupling was isolated during a Sonogashira coupling reaction between a diethynyl‐carbazole spacer and a 5‐bromo‐triarylporphyrin and the properties of this original compound were compared with the 3,6‐disubstituted carbazole bisporphyrin tweezers. The dyads reported herein present a two‐photon absorption maximum at 920 nm with two‐photon absorption cross‐section in the 1200 GM range. Despite a strong linear absorption in the Soret region and moderate fluorescence quantum yield, they both lead to a high brightness reaching 30 000 M ?1 cm?1.  相似文献   

12.
The title compounds trans-M(2)(O(2)CMe)(2)[C((i)PrN)(2)C≡C-Ph](2), I (M = Mo) and II (M = W), show electronic absorptions in the visible region of the spectrum assignable to (1)MLCT [M(2)δ to phenylethynylamidinate π*]. These compounds show dual emission from S(1) and T(1) states. For both I and II, S(1) is (1)MLCT, but for I the T(1) state is shown to be MMδδ* while for II T(1) is (3)MLCT. The lifetimes of the S(1) and T(1) states have been determined by femtosecond and nanosecond transient absorption spectroscopy: for I S(1) ~ 20 ps and T(1) ~ 100 μs and for II S(1) ~ 6 ps and T(1) ~ 5 μs. From solvent dependence of the absorption and emission spectra, we suggest that the S(1) states are localized on one amidinate ligand though the initial absorption is to a delocalized state.  相似文献   

13.
A new group of porphyrin-fullerene dyads with an azobenzene linker was synthesized, and the photochemical and photophysical properties of these materials were investigated using steady-state and time-resolved spectroscopic methods. The electrochemical properties of these compounds were also studied in detail. The synthesis involved oxidative heterocoupling of free base tris-aryl-p-aminophenyl porphyrins with a p-aminophenylacetal, followed by deprotection to give the aldehyde, and finally Prato 1,3-dipolar azomethineylide cycloaddition to C60. The corresponding Zn(II)-porphyrin (ZnP) dyads were made by treating the free base dyads with zinc acetate. The final dyads were characterized by their 1H NMR, mass, and UV-vis spectra. 3He NMR was used to determine if the products are a mixture of cis and trans stereoisomers, or a single isomer. The data are most consistent with the isolation of only a single configurational isomer, assigned to the trans (E) configuration. The ground-state UV-vis spectra are virtually a superimposition of the spectral features of the individual components, indicating there is no interaction of the fullerene (F) and porphyrin (H2P/ZnP) moieties in the ground state. This conclusion is supported by the electrochemical data. The steady-state and time-resolved fluorescence spectra indicate that the porphyrin fluorescence in the dyads is very strongly quenched at room temperature in the three solvents studied: toluene, tetrahydrofuran (THF), and benzonitrile (BzCN). The fluorescence lifetimes of the dyads in all solvents are sharply reduced compared to those of H2P and ZnP standards. In toluene, the lifetimes of the free base dyads are 600-790 ps compared to 10.1 ns for the standard, while in THF and BzCN the dyad lifetimes are less than 100 ps. For the ZnP dyads, the fluorescence lifetimes were 10-170 ps vs 2.1-2.2 ns for the ZnP references. The mechanism of the fluorescence quenching was established using time-resolved transient absorption spectroscopy. In toluene, the quenching process is singlet-singlet energy transfer (k approximately 10(11) s-1) to give C60 singlet excited states which decay with a lifetime of 1.2 ns to give very long-lived C60 triplet states. In THF and BzCN, quenching of porphyrin singlet states occurs at a similar rate, but now by electron transfer, to give charge-separated radical pair (CSRP) states, which show transient absorption spectra very similar to those reported for other H2P-C60 and ZnP-C60 dyad systems. The lifetimes of the CSRP states are in the range 145-435 ns in THF, much shorter than for related systems with amide, alkyne, silyl, and hydrogen-bonded linkers. Thus, both forward and back electron transfer is facilitated by the azobenzene linker. Nonetheless, the charge recombination is 3-4 orders of magnitude slower than charge separation, demonstrating that for these types of donor-acceptor systems back electron transfer is occurring in the Marcus inverted region.  相似文献   

14.
We study the effects of symmetry breaking on the photogenerated intramolecular charge transfer (CT) state of 9,9'-bianthryl (BA) with femtosecond time-resolved near-IR spectroscopy. The time-resolved near-IR spectra are measured in acetonitrile for a symmetric substituted derivative of 10,10'-dicyano-9,9'-bianthryl (DCBA) and asymmetric substituted derivatives of 10-cyano-9,9'-bianthryl (CBA) and 9-(N-carbazolyl)anthracene (C9A), as well as nonsubstituted BA. The transient near-IR absorption spectrum of each compound at 0 ps has a locally excited (LE) absorption band, which agrees with the transient absorption band of the corresponding monomer unit. At 3 ps after the photoexcitation, the symmetric compounds show a broad charge transfer (CT) absorption band, whereas no absorption peak appears in the spectra of the asymmetric compounds. The broad CT absorption at 1250 nm only observed for the symmetric compounds can be attributed to the charge resonance transition associated with two equivalent charge separated states.  相似文献   

15.
A series of six new dyads consisting of a zinc or magnesium porphyrin appended to a platinum terpyridine acetylide complex via a para-phenylene bisacetylene spacer are described. Different substituents on the 4' position of the terpyridinyl ligand were explored (OC7H15, PO3Et2, and H). The ground-state electronic properties of the dyads are studied by electronic absorption spectroscopy and electrochemistry, and they indicate some electronic interactions between the porphyrin subunit and the platinum complex. The photophysical properties of these dyads were investigated by steady-state, time-resolved, and femtosecond transient absorption spectroscopy in N,N-dimethylformamide solution. Excitation of the porphyrin unit leads to a very rapid electron transfer (2-20 ps) to the nearby platinum complex followed by an ultrafast charge recombination, thus preventing any observation of the charge separated state. The variation in the rate of the photoinduced electron transfer in the series of dyads is consistent with Marcus theory. The results underscore the potential of the para-phenylene bisacetylene bridge to mediate a rapid electron transfer over a long donor-acceptor distance.  相似文献   

16.
17.
By using the femtosecond laser spectroscopic techniques, we have studied the ultrafast response and the nonlinear optical properties of three molecules with donor-acceptor structure (denoted as T01, T02, and T03). Two-photon absorption (2PA) cross sections measured by the open aperture Z-scan technique were determined to be 77, 90, and 410 GM for T01, T02, and T03, respectively. The relaxation dynamics of the excited states were measured by two-color femtosecond pump-probe and time-resolved photoluminescence (PL) experiments. By changing the solvent from chloroform (CHCl3) to dimethyl sulfoxide (DMSO), the transient dynamics was found changed significantly and the decay time of PL emission decreased dramatically because DMSO with large dipole moment accelerates the cross-transfer process and the nonradiative process in the molecules.  相似文献   

18.
We investigate two-photon absorption (2PA) in a series of fluorenyl-based 9,9-diethyl-2-ethynyl-7-((4-R-phenyl)ethynyl)-9,9a-dihydro-4aH-fluorene chromophores with R being various electron donating (ED) and electron withdrawing (EW) groups. We use wavelength-tunable femtosecond laser pulses to measure the 2PA cross sections in the lowest dipole-allowed transition and show that the substituents with stronger ED or EW character enhance the peak 2PA cross section (up to σ(2) ~ 60-80 GM) while the neutral substituents lead to smaller cross sections, σ(2) < 10 GM. We apply two-level approximation to establish a quantitative relation between the 2PA in the pure electronic transition (0-0) and the corresponding change of the permanent electric dipole moment upon the excitation (Δμ). This relation is elucidated by comparing Δμ values obtained from the 2PA measurements with quantum-chemical calculations and with measurements of solvatochromic shifts in a series of solvents. We show that the calculated Δμ correlate well with the values obtained from the 2PA spectroscopy. The Δμ values obtained from the solvatochromic shifts agree well with the above two methods for the chromophores with neutral or weak EW or ED substituents. On the other hand, stronger EW or ED end groups give much larger Stokes shifts, which lead to an overestimation of the Δμ values. We tentatively attribute this effect to the excitation-induced electronic density change occurring predominantly at the substituent side of the molecule, which causes the effective point dipole associated with the Δμ to interact more strongly with the surrounding solvent.  相似文献   

19.
Three novel conjugated polymers with N‐arylpyrrole as the conjugated bridge were designed and synthesized, which emitted strong one‐ or two‐photon excitation fluorescence in dilute tetrahydrofuran (THF) solution with high quantum yields. The maximal two‐photon absorption (TPA) cross‐sections of the polymers, measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in THF, were 752, 1114, and 1869 GM, respectively, indicating that the insertion of electron‐donating or electron‐withdrawing moieties into the polymer backbone could benefit to the increase of the TPA cross‐section. Their large TPA cross‐sections, coupled with the relatively high emission quantum yields, made these conjugated polymers attractive for practical applications, especially two‐photon excited fluorescence. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
In contrast to the neutral macrocycle [UN*(2)(N,C)] (1) [N* = N(SiMe(3))(3); N,C = CH(2)SiMe(2)N(SiMe(3))] which was quite inert toward I(2), the anionic bismetallacycle [NaUN*(N,C)(2)] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me(3)Si)NSiMe(2)CH(2)CH(2)SiMe(2)N(SiMe(3))] resulting from C-C coupling of the two CH(2) groups, and [NaUN*(N,O)(2)] (3) [N,O = OC(═CH(2))SiMe(2)N(SiMe(3))], which is devoid of any U-C bond, was oxidized into the U(V) bismetallacycle [Na{UN*(N,O)(2)}(2)(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN(3) or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN*(2)(N,C)(N(3))] [M = Na, 7a or Na(15-crown-5), 7b], M[UN*(2)(N,C)(CN)] [M = NEt(4), 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N(3))(2)] [M = Na, 9a or Na(THF)(4), 9b], [NEt(4)][UN*(N,N)(CN)(2)] (10), M[UN*(N,O)(2)(N(3))] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O)(2)(CN)] [M = NEt(4), 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral U(V) complex [U(N{SiMe(3)}SiMe(2)C{CHI}O)(2)I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号