首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results which advance and improve the usefulness, accuracy and efficiency of incremental centre hole drilling as a method of measuring near surface residual stress fields. Particular emphasis is placed on providing optimal values for the number of drilling step increments to be used and their corresponding size. Guidelines on the optimal values for the number and size of steps to use during measurements are presented for various ratios of hole radius to strain gauge rosette radius in the form of tabulated data. These guidelines are subsequently incorporated into a new data analysis program which permits very near surface residual stress fields to be accurately determined in real components. The benefits of the new approach are highlighted by reporting the results of measurements made on three industrial components, each of which has been subjected to a well-known engineering process. These components are a shot-peened spring-steel, a friction stir welded aluminium alloy, and a titanium alloy subjected to three different machining processes. The results reveal that the improvements to the incremental centre hole drilling technique can provide measured residual stresses from depths ranging from about 10 m to 1 mm.  相似文献   

2.
The effectiveness of optical (mostly interferometric) methods for the measurement of residual stresses is largely demonstrated in literature. Nevertheless, these techniques are still confined to optical laboratories due to their high sensitivity to vibrations which makes it very difficult to perform the measurement in an industrial environment. Digital Image Correlation (DIC) has recently been proposed as a possible solution to this problem: this non-interferometric technique is much less affected by vibrations, but its sensitivity is relatively low, thus negatively affecting the accuracy of results. This work proposes to use a variant of Digital Image Correlation, known as Integrated DIC (iDIC), in combination with the hole drilling technique. Since iDIC directly incorporates in its formulation the displacement field related to hole drilling, it overcomes most of the problems of standard DIC; in this way it is possible to obtain accurate results without using interferometric techniques.  相似文献   

3.
The incremental hole-drilling method is widely used in residual stress depth distribution analysis. However, two specific difficulties with the generalization of the incremental method exist, including the consideration of the sample thickness and residual stress states close to the local material’s yield strength. The stress concentration effect of the hole can lead to plastic deformation in the vicinity of the hole, which results in an overestimation of residual stresses. Typically, the effect of the component’s thickness and the plasticity effects are analyzed separately and correction approaches are proposed. In the current paper, we analyze the combined effects of plasticity and thickness on residual stress analysis using the incremental hole-drilling method. A systematic study was performed on steel samples with (i) isotropic and (ii) anisotropic elastic and elasto-plastic material behavior with varying thicknesses ranging between 1 mm and 4 mm. Electronic speckle pattern interferometry (ESPI) hole-drilling experiments were conducted on beam samples loaded using a 4-point bending fixture. Finite element simulations were conducted to gain insight into the effects of incremental hole-drilling. The results indicate that reducing the component’s thickness increases the plastic deformation in the vicinity of the hole and results in significant stress deviations. Thin components bend during hole-drilling as a result of the loss of stiffness, which amplifies the plasticity effect.  相似文献   

4.
Nobre  J. P.  Polese  C.  van Staden  S. N. 《Experimental Mechanics》2020,60(4):553-564
Experimental Mechanics - The American standard ASTM E837 presents a standard procedure to determine residual stresses in isotropic materials using the incremental hole drilling technique (IHD). The...  相似文献   

5.
相移云纹干涉法与盲孔法相结合检测复合材料的残余应力   总被引:1,自引:0,他引:1  
常红  姚河省  侯丽丽 《力学季刊》2006,27(3):511-514
本文应用相移云纹干涉法与盲孔法相结合检测纤维增强复合材料的残余应力。盲孔法是工程中被广泛应用的测定残余应力的方法之一,相移云纹干涉方法可得到孔边任意一点的位移信息。由于正交各向异性复合材料在弹性主方向不发生拉剪(或剪拉)耦合效应,所以通过适当读取孔边特殊点的位移,可方便地得到残余应力值。  相似文献   

6.
The present study deals with the development and the application of the through-hole drilling method for the residual stress analysis in orthotropic materials. Through a systematic theoretical study of the stress field present on orthotropic plates with a circular hole, the relationships between the relaxed strains measured by a rectangular strain gauge rosette and the Cartesian components of the unknown residual stresses are obtained. The theoretical formulas of each influence coefficient allow the user an easy application of the method to the analysis of uniform-residual stresses on a generic homogeneous orthotropic material. Furthermore, to extend the method to the analysis of the residual stresses on orthotropic laminates, caused by initial in-plane loadings, an alternative formulation is implemented. The accuracy of the proposed method has been assessed through 3D numerical simulations and experimental tests carried out on unidirectional, cross-ply and angle-ply laminates.  相似文献   

7.
This paper reports a new technique, namely the incremental micro-hole-drilling method (IμHD) for mapping in-plane residual or applied stresses incrementally as a function of depth at the micron-scale laterally and the sub-micron scale depth-wise. Analogous to its macroscale counterpart, it is applicable either to crystalline or amorphous materials, but at the sub-micron scale. Our method involves micro-hole milling using the focused ion beam (FIB) of a dual beam FEGSEM/FIB microscope. The resulting surface displacements are recorded by digital image correlation of SEM images recorded during milling. The displacement fields recorded around the hole are used to reconstruct the stress profile as a function of depth. In this way residual stresses have been characterized around a drilled hole of 1.8microns. diameter, enabling the profiling of the stress variation at the sub-micron scale to a depth of 1.8 microns. The new method is used to determine the near surface stresses in a (peened) surface-severe-plastically-deformed (S2PD) Zr50Cu40Al10 (in atomic percent, at.%) bulk metallic glass bar. In plane principal stresses of -800 MPa ± 90 MPa and −600 MPa ± 90 MPa were measured, the maximum compressive stress being oriented 15° to the axis of the bar.  相似文献   

8.
Heikebrügge  S.  Ottermann  R.  Breidenstein  B.  Wurz  M.C.  Dencker  F. 《Experimental Mechanics》2022,62(4):701-713
Experimental Mechanics - Commonly, polymer foil-based strain gauges are used for the incremental hole drilling method to obtain residual stress depth profiles. These polymer foil-based strain...  相似文献   

9.
Hole-drilling and Electronic Speckle Pattern Interferometry (ESPI) are used to measure residual stresses in metal specimens. The slitting method is chosen as an alternative to the more commonly used hole-drilling method because it involves less material removal and leaves large areas of highly deformed material available to be measured. However the conventional single-slitting method is sensitive only to the stress component perpendicular to the slit direction, and thus has a strong directional bias. Conventional ESPI has a similar bias because it responds to surface displacements in a specific sensitivity direction. In this paper, a novel cross-slitting method with dual-axis ESPI measurements is proposed to address both directional biases. Cross-slitting is introduced as a means of releasing all in-plane stress components. The dual-axis ESPI system uses diagonal-mirror and shutter devices to provide surface displacement measurements in orthogonal in-plane directions. The combination of the cross-slit and dual-axis measurement gives isotropic sensitivity to the in-plane residual stress components. Experimental measurements are described that illustrate the capability and effectiveness of the cross-slitting/ESPI technique.  相似文献   

10.
11.
A method is developed for determining the three displacement components by the method of holographic interferometry from two interferograms used to measure residual stresses by hole drilling. The displacements are determined at the intersection points of the principal axes and the hole boundary. The method is experimentally validated by measuring the stress state of a plate under uniaxial tension __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 8, pp. 111–117, August 2005.  相似文献   

12.
Multiple measurements using the hole drilling method were made in samples with a “known” state of residual stress. Drilling parameters were independently varied (bit rotation speed, bit diameter, and hole depth) to determine the effect on accuracy and repeatability. The study showed that accurate results can be achieved without ultra-high drill rotation speeds and that, in aluminum and stainless steel, speeds over 5 krpm and 10 krpm (respectively) were sufficient. Inaccuracies were evident in the stainless steel at speeds below 10 krpm and were attributed to non-circular holes, which may have been the result of bit vibration. There were no significant trends associated with altering the hole depth and only a slight trend associated with bit diameter variation.  相似文献   

13.
Mechanical strain relief techniques for estimating the magnitude of residual stress work by measuring strains or displacements when part of the component is machined away. The underlying assumption is that such strain or displacement changes result from elastic unloading. Unfortunately, in components containing high levels of residual stress, elastic-plastic unloading may well occur, particularly when the residual stresses are highly triaxial. This paper examines the performance of one mechanical strain relief technique particularly suitable for large section components, the deep hole drilling (DHD) technique. The magnitude of error is calculated for different magnitudes of residual stress and can be substantial for residual stress states close to yield. A modification to the technique is described to allow large magnitudes of residual stress to be measured correctly. The new technique is validated using the case of a quenched cylinder where use of the standard DHD technique leads to unacceptable error. The measured residual stresses using the new technique are compared with the results obtained using the neutron diffraction technique and are shown to be in excellent agreement.  相似文献   

14.
Deep Hole Drilling (DHD) is a mechanical strain relief technique used to measure residual stresses within engineering components. Such techniques measure strains or displacements when part of the component is machined away and typically assume elastic unloading. However, in components containing high levels of residual stress, elastic–plastic unloading can occur which may introduce substantial error. For the case of the DHD technique, a modification to the technique referred to here as the incremental or iDHD technique has been developed to allow such high levels of residual stress to be measured. Previous work has demonstrated the accuracy of the iDHD technique, although only for axisymmetric residual stress distributions. In the present investigation, the application of the iDHD technique has been extended to the general case of biaxial residual stress fields. Finite element simulations are first carried out to demonstrate the ability of the iDHD technique to measure biaxial residual stress. Experimental measurements were then made on shrink fit components and ring welded components containing biaxial residual stress to investigate the performance of the technique in practice. Good agreements between iDHD measurements, neutron diffraction measurements and FE predictions of the residual stresses were obtained, demonstrating the generally improved accuracy of the iDHD technique compared to the standard DHD approach.  相似文献   

15.
Residual stress is very important for the study of cardiovascular-relevant issues,such as assessing the vulnerability of atherosclerosis and aneurysm.In this pa...  相似文献   

16.
在圆筒或圆柱的剥层X射线应力测定中,可以用幂级数来分段近似剥离面的实测切向应力一层深函数和实测轴向应力一层深函数,从而计算剥层应力释放所产生的附加应力,求得原始的真实径向、切向和轴向应力沿半径方向的分布,文中给出计算应力校正量的公式。  相似文献   

17.
Machining induced residual stress states have been identified to affect the distortion of parts during following heat treatments. Thus, ideally a complete characterization of the components residual stress state is required. Magnetic and micromagnetic analysis of residual stresses can represent an important gain of time compared to X-ray diffraction. Investigations with these two methods were performed on different components with various and inhomogeneous residual stress states: cylindrical and tapered ball bearing rings made from AISI52100 steel and a disc made from AISI5210 steel. Reliable results and good agreement between X-ray diffraction data and residual stresses obtained from the magnetic and micromagnetic analysis can be obtained with the use of a calibration for each single component. An important gain of time can be achieved with the combined use of X-ray diffraction analysis for the calibration and the micromagnetic technique. However, local residual stress variations in zones smaller than the sensor size may not be detected. A global calibration of the micromagnetic equipment with one calibration file for several parts still needs optimization.  相似文献   

18.
The hole drilling method is one of the most used semi-destructive techniques for the analysis of residual stresses in mechanical components. The non-uniform stresses are evaluated by solving an integral equation in which the strains relieved by drilling a hole are introduced. In this paper a new calculation procedure, based on the Newton-Raphson method for the determination of zeroes of functions, is presented. This technique allows the user to introduce complex and effective forms of stress functions for the solution of the problem. All the relationships needed for the evaluation of the stresses are obtained in explicit form, eliminating the need to use additional mathematical tools. The technique is based on a rather general theory that allows to obtain the formulations of various existing techniques as particular cases.  相似文献   

19.
根据挤压强化孔残余应力场具有衰减的特征,对LY12cz和LC4cs两种铝合金材料在不同条件下挤压孔的残余应力衰减规律进行了有损试验测定。通过试验得到的有限数据,建立了一种指数型拟合函数模型,并可作为估计残余应力循环衰减值的一种工程简化方法。本文的研究结果为改善强化设计的失效预测方法提供了依据。  相似文献   

20.
A one-dimensional variational problem for an anisotropic, partially inhomogeneous, residually stressed, rectangular thin-walled beam is derived, by Γ-convergence, from the three-dimensional theory of linear elasticity with residual stress.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号