首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, the hole drilling method for determining residual stresses has been implemented with optical methods such as holographic interferometry and ESPI to overcome certain limitations of the strain rosette version of hole drilling. Although offering advantages, the interferometric methods require vibration isolation, a significant drawback to their use outside of the laboratory. In this study, a 3D image correlation approach was used to measure micron-sized surface displacements caused by the localized stress relief associated with hole drilling. Residual stresses were then found from the displacements using non-dimensional relations previously derived by finite element analysis. A major advantage of image correlation is that it does not require interferometric vibration isolation. Experiments were performed to check the ability of this new approach for uniaxial and equi-biaxial states of stress. Stresses determined by the approach were in good agreement with computed values and those determined by hole drilling using holographic interferometry.  相似文献   

2.
Holographic interferometry is used to determine in-plane radial displacements due to release of residual stresses by hole drilling. A method is derived for relating radial displacements measured in three directions of illumination to the state of residual stress, analogous to relations used in the conventional strain-rosette technique. Residual stress is produced by an interference fit of two circular tubes. Agreement between stress determined holographically with a computed value and with that determined by the conventional technique is good. Advantages of the holographic technique in overcoming various shortcomings of the conventional technique are discussed. A modification of the holographic technique involving data collection in only two directions of illumination is described.  相似文献   

3.
The relationship between the displacements and stresses relieved from blind-hole drilling is introduced via an easily understandable concept in this paper. Combining this concept with holographic interferometry, two holographic blind-hole methods for measuring residual stresses are established. The first is a new technique which requires measuring three out-of plane displacements; and the second is a modification of another technique which requires measuring two out-of plane displacements. Each of the two methods needs only one interference fringe pattern and is demonstrated by using it to measure a known residual stress in an aluminum specimen.  相似文献   

4.
A method is developed for determining the three displacement components by the method of holographic interferometry from two interferograms used to measure residual stresses by hole drilling. The displacements are determined at the intersection points of the principal axes and the hole boundary. The method is experimentally validated by measuring the stress state of a plate under uniaxial tension __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 8, pp. 111–117, August 2005.  相似文献   

5.
Pipelines usually operate under bending and axial stresses, caused by external loads, combined with residual stress distributions (manufacturing stresses), which affect the mechanical behavior of the pipe. Despite its semi-destructive nature, the hole drilling technique and digital speckle pattern interferometry (DSPI) can be applied to determine combined stresses along a cross-section. To achieve this, a set of equally-spaced angular points spread along the cross-section perimeter are measured. For non-uniform stress computations the hole drilling technique frequently gives a detailed stress distribution which is related to the external layer (1 mm) of the pipeline. In order to obtain a representative and unique value for the stress acting at each point, a novel approach can be used to evaluate a weighted average stress from each available stress distribution and to identify possible outlier measured points. In accordance with this approach, weighting coefficients are calculated using some particular features found in the residual stress profiles of pipelines. A reference bending test bench was used to evaluate the proposed methodology and it verified good agreement between the reference and computed stresses.  相似文献   

6.
Austenitic stainless steel cylinders and rings are spray water quenched to create residual stresses at or greater than the yield strength. The residual stresses are measured using neutron diffraction, and two mechanical strain relaxation methods: deep hole drilling and incremental centre hole drilling. This paper compares the measurements with predictions of quenching using finite element analysis. Also finite element analysis is used to mimic deep hole and incremental centre hole drilling methods and to reconstruct residual stresses as if they have been measured. The measurements reveal similar trends to the predictions but there is only limited agreement between their magnitudes. However, there is better agreement between the reconstructed stresses and the measurements. Both the two mechanical strain relaxation methods reveal that large discrepancies occur between measurements and predictions arise because of plasticity. Irrespective of this and surprisingly there is good agreement between deep hole drilling and neutron diffraction measurements.  相似文献   

7.
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.  相似文献   

8.
A method is described for the rapid, accurate determination of residual stresses from a holographic interference fringe pattern. The pattern is generated by the displacement field caused by localized relief of residual stresses via the introduction of a small, shallow hole into the surface of a component or test specimen. The theoretical development of the holographic method is summarized. An example is given showing how the method can be applied to a typical experimentally observed fringe pattern to determine principal residual stresses and directions.  相似文献   

9.
A mathematical method is proposed for calculating residual stresses from hole drilling electronic speckle pattern interferometry (ESPI) data, independent of rigid-body motions. Even though the signal-to-noise ratio of typical ESPI data is modest, the method achieves good computational stability by averaging a large amount of data. It does this without excessive numerical effort by exploiting known trigonometric relationships among the data. The resulting stress calculations are very rapid, and are well suited for future application to non-uniform stress measurements.  相似文献   

10.
Over the years, an assortment of methods for determining residual stresses has been developed in the field of experimental mechanics. Adaptations of those methods to study residual strains and stresses in various biological structures found in humans, other mammals, viruses and an insect are reviewed. Methods considered include deflections from release of residual stresses, hole drilling and ring coring, strains upon dissection, the contour method, slitting (crack compliance), X-ray diffraction, photoelasticity, and membrane and shell displacements. Sources of residual stresses and strains are summarized and examples of their physiological role noted.  相似文献   

11.
A combined system of blind-hole drilling and digital speckle pattern interferometry that performs automated data analysis is used to determine the magnitude of the residual stress induced in an aluminum plate subjected to uniaxial tension. The authors perform a finite element analysis of the blind-hole drilling process to adjust the analytical model commonly used for residual stress determination. The relieved displacement field due to the introduction of the blind hole is determined by the evaluation of the optical phase distribution. Using more than 300 values of this displacement field, the magnitude of the residual stress is determined and compared with the applied stress value.  相似文献   

12.
A general form used for analyzing residual stresses measured using the holographic blind-hole method is introduced in this paper. Adopting the general form presented, the residual stresses can be obtained using three relative displacements measured from a single interference fringe pattern. Even for the case in which phase-shifting holographic interferometry is not employed, interpolating calculations for determining the fringe orders are not needed, since the choice of data points becomes more flexible when using this general form. Two experiments, the first one carried out by the authors and the second one published previously, are used to illustrate the applicability and usefulness of this general form. Suggestions for the applications of this general form are also established via the upper bound error estimations.  相似文献   

13.
Drilling can affect the integrity of the surface of a mechanical component and reduce its fatigue life. Thus, drilling parameters such as lubrication or drilling velocity must be optimized to ensure a satisfactory residual mechanical state of the hole surfaces. Unfortunately, experimental tests are time consuming and it is not easy to observe the cutting process because of the confinement of the drill zone. The literature does not exhibit any numerical simulation capable of simulating 3D thermomechanical phenomena in the drill zone for large depth holes. Therefore, residual stresses cannot be easily simulated by means of the sole drilling parameters. The aim of this article is to propose a new numerical approach to compute drilling residual stresses for large-depth holes. A first simulation is developed to simulate heat transfer by means of a 3D thermoviscoplastic simulation in a new Rigid-ALE framework allowing the use of large calculation time steps. Then, a time interpolation and a spatial projection are implemented to rebuild the Lagrangian thermal history of the machined component. Finally, a thermo-elastoplastic simulation is carried out to compute residual stresses in the final workpiece. In this paper, the method is applied to a 316L austenitic stainless steel in the case of an unlubricated hole. The computed residual stresses are compared to experimental measurements.  相似文献   

14.
Most validation studies of mechanical strain relaxation (MSR) methods for residual stress measurement rely on using the saw-tooth residual stress distribution resulting from four point bending and elastic–plastic deformation. Validation studies using simple applied stress profiles in rectangular steel beams are used in this work, together with beams subjected to elastic–plastic bending. Two MSR methods are explored, deep-hole drilling (DHD) and incremental centre hole drilling (ICHD). As well as a series of experiments, finite element analyses are conducted to determine the accuracy in the inversion of measured deformation to reconstruct stress. The validation tests demonstrated that apart from the applied stresses, the initial residual stresses also contribute even when samples are expected to be stress free. The uncertainty in measurement for the two MSR methods is determined, with the uncertainty in near surface measurement found to be significantly larger than uncertainty for interior measurement. In simple loading cases (and simple stress profiles) the uncertainty in measurement and hence the degree of validation is shown to be within about ±50 MPa for steel for “known” stress up to about 140 MPa. However, if the residual stress distribution is more complex there arises increased uncertainty in the predicted residual stress and lack of confidence between measurements methods.  相似文献   

15.
Nobre  J. P.  Polese  C.  van Staden  S. N. 《Experimental Mechanics》2020,60(4):553-564
Experimental Mechanics - The American standard ASTM E837 presents a standard procedure to determine residual stresses in isotropic materials using the incremental hole drilling technique (IHD). The...  相似文献   

16.
The hole-drilling method is widely used to measure residual stresses in mechanical components. Recent developments have shown that strains measured on the surface during an incremental drilling can be related to residual-stress distribution. Researchers throughout the world have proposed different calibration methods which lead to more or less accurate results.The present paper discusses different approaches used. A new calibration method is proposed. We also show how finite-element analysis can be used to determine the correlation coefficients. The variation of the strains measured on the surface for each increment is due to, first, the residual stresses in the layer and, second, the change of the hole geometry. Most authors do not consider the latter aspect. Our results show that this causes a significant error in the experimental data. The finite-element method has been used to compute the coefficients for all types of strain-gage rosettes when the hole diameter is predetermined.Another problem of the hole-drilling method is the selection of the drilling tool. Two systems have been studied: ultra-high-speed air turbine and conventional milling machine. The method has been applied on both shot-peened and water-quenched test specimens. The results are successfully compared with the bending-deflection and the X-ray method.  相似文献   

17.
The moiré hole drilling method in a biaxially loaded infinite plate in plane stress is an inverse problem that exhibits a dual nature: the first problem results from first drilling the circular hole and then applying the biaxial loads, while the other problem arises from doing the opposite, i.e., first applying the biaxial load and then drilling the circular hole. The first problem is hardly ever addressed in the literature but implies that either separation of stresses or material property identification may be achieved from interpreting the moiré signature around the hole. The second is the well-known problem of determination of residual stresses from interpreting the moiré fringe orders around the hole. This paper addresses these inverse problem solutions using the finite element method as the means to model the plate with a hole, rather than the typical approach using the Kirsch solution, and a least-squares optimization approach to resolve for the quantities of interest. To test the viability of the proposed method three numerical simulations and one experimental result in a finite width plate are used to illustrate the techniques. The results are found to be in excellent agreement. The simulations employ noisy data to test the robustness of this approach. The finite-element-method-based inverse problem approach employed in this paper has the potential for use in applications where the specimen shape and boundary conditions do not conform to symmetric or well-used shapes. Also, it is a first step in testing similar procedures in three-dimensional samples to assess the residual stresses in materials.  相似文献   

18.
A study was conducted to develop a methodology to obtain near-surface residual stresses for laser-peened aluminium alloy samples using the contour method. After cutting trials to determine the optimal cut parameters, surface contours were obtained and a new data analysis method based on spline smoothing was applied. A new criterion for determining the optimal smoothing parameters is introduced. Near-surface residual stresses obtained from the contour method were compared with X-ray diffraction and incremental hole drilling results. It is concluded that with optimal cutting parameters and data analysis, reliable near-surface residual stresses can be obtained by the contour method.  相似文献   

19.
The hole-drilling technique is a relatively well established and straightforward semidestructive method for measuring residual stresses in fabricated components. However, a number of factors can have a marked influence on the accuracy of this technique. Some of the factors evaluated in the present work were the method of drilling the hole, the size and shape of the hole, and the equations used to calculate the principal residual stresses from the relaxed-strain measurements. In this investigation, air-abrasive hole drilling using a 0.062-in.-ID stationary nozzle gave the most reproducible and accurate results. Of the three approaches used to calculate the residual stresses, one method proved to be superior, especially in a biaxial-stress field.  相似文献   

20.
The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024-T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号