首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aqueous lyotropic liquid crystal (LLC) assemblies with bicontinuous cubic morphologies (Q-phases) have shown promise in applications ranging from selective chemical separations to ion transporting media, yet universal design criteria for amphiphiles that adopt these unique structures remain elusive. Recent reports have demonstrated that cationic gemini surfactants exhibit a tendency to form bicontinuous cubic LLCs as compared to single-tail amphiphiles; however, the universality of this surfactant design motif in stabilizing Q-phases remains untested. Herein, we report the modular synthesis of a new class of anionic gemini surfactants derived from aliphatic carboxylic acids and demonstrate their unexpectedly strong propensity to form gyroid LLC phases with unprecedented stability between 25 and 100 °C over amphiphile concentration windows up to 20 wt % wide. By systematically varying the alkyl spacer length and surfactant counterions (Na(+), K(+), and (CH(3))(4)N(+)), we identify molecular motifs that favor formation of technologically useful bicontinuous cubic LLC morphologies.  相似文献   

2.
A series of protic ionic salts were synthesised by a simple acid–base reaction from various pyridine derivatives and dodecylbenzenesulfonic acid in a common organic solvent and characterised in terms of their thermal and lyotropic liquid crystalline properties using various experimental techniques. All of them exhibited lyotropic liquid crystalline phases in toluene, methanol, acetonitrile, dimethyl sulfoxide and water. Their critical concentrations for the formation of biphasic solutions and concentrations for the formation of lyotropic solutions were quite broad depending on the dielectric constants of the solvents. Their lyotropic phases were identified as lamellar phases, since their textures exhibited bâtonnets, oily streaks and mosaic textures. They can potentially be used for many organic transformations, which may have implications in green chemistry.  相似文献   

3.
Lyotropic liquid crystalline phases formed in an ionic liquid   总被引:1,自引:0,他引:1  
Lyotropic liquid crystalline phases of an amphiphilic block copolymer are constructed and characterized in an ionic liquid with comparison of component and temperature effects.  相似文献   

4.
The polymerisation of styrene in lyotropic liquid-crystalline (LC) phases of dioctadecyldimethylammonium bromide (DODAB) in water is explored. Amphiphile concentrations between 20 and 50 wt % are employed. The study is set out as a model study for polymerisation reactions in nonstabilised, nonfunctional bilayer systems. X-ray characterisation was used to assess the phase behaviour of the lyotropic mesophases before, during and after polymerisation. The DODAB/water system forms the lamellar phase within the concentration range considered. Addition of styrene to the lamellar phase of DODAB at an equimolar ratio induces a phase shift to a bicontinuous cubic phase at elevated temperatures near the phase-transition temperature. Upon polymerisation within this cubic phase, the phase structure is maintained if the system is kept at constant temperature; however, if the polymer/amphiphile phase is cooled, the lamellar phase, being typical of the DODAB/water system, is restored. It is concluded that, as a result of phase separation between the polymer and the amphiphile phase, the polymerisation in lyotropic LC phases does not provide a stable copy of the templating amphiphile phase. This is in analogy to the observations for polymerisations in other lyotropic phases. Received: 16 March 2000 Accepted: 1 July 2000  相似文献   

5.
6.
The stability of a variety of lyotropic liquid crystals formed by a number of polyoxyethylene nonionic surfactants in the room-temperature ionic liquid ethylammonium nitrate (EAN) is surveyed and reported. The pattern of self-assembly behaviour and mesophase formation is strikingly similar to that observed in water, even including the existence of a lower consolute boundary or cloud point. The only quantitative difference from water is that longer alkyl chains are necessary to drive the formation of liquid crystalline mesophases in EAN, suggesting that a rich pattern of "solvophobic" self-assembly should exist in this solvent.  相似文献   

7.
The phase behaviors of four phytosterol ethoxylates surfactants (BPS-n, n = 5, 10, 20, and 30) with different oxyethylene units in room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), have been studied. The polarized optical microscopy and small-angle X-ray scattering techniques are used to characterize the phase structures of these binary systems at 25 °C. The structure and ordering of the liquid crystalline (LC) phases in such BPS-n/[Bmim]BF4 systems are found to be influenced by BPS-n concentration and the temperature. Due to the bulky and rigid cholesterol group, the phytosterol ethoxylates surfactants exhibit different properties and interaction mechanism from the conventional CnEOm type nonionic surfactant systems. The rheological measurements indicate a highly viscoelastic nature of these lyotropic LC phases and disclose a lamellar phase characteristic with a rather strong rigidity at high surfactant concentrations. The control experiment with Brij 97(polyoxyethylene (10) oleyl ether)/[Bmim]BF4 system and the FTIR measurements help to recognize that the solvophobic interaction combining with the hydrogen bonding are the main driving forces for the LC phases formation.  相似文献   

8.
Multiwalled carbon nanotubes (MWCNTs) were evenly dispersed within hexagonal lyotropic liquid crystals (LLCs) formed in room-temperature ionic liquids (RTILs), ethylammonium nitrate (EAN). Characterization and tribological properties of dispersed system were studied in detail. Polarized optical microscopy images combined with small-angle X-ray scattering (SAXS) results indicate that the MWCNTs are well-dispersed and that the introduction of MWCNTs does not destroy the structure of hexagonal LLCs. The increase of d spacing demonstrates the integration of MWCNTs within the cylinders of the hexagonal LLCs. FT-IR and Raman spectra of the MWCNTs-LLC composites show the characteristic absorption peaks and Raman bands of MWCNTs. The tribological properties were explored to greatly extend the applications of MWCNTs-LLC composites in RTILs as lubricating materials. The rheological measurement results indicate that MWCNTs-LLC composites are highly viscoelastic and that the apparent viscosity is enhanced by the presence of the MWCNTs.  相似文献   

9.
The homo-interaction between urea moieties residing in close proximity to each other generally results in very strong intermolecular hydrogen bonding. The bifurcated hydrogen bonding exhibited by n-alkyl substituted ureas means that for those urea surfactants possessing medium and long hydrocarbon chain substituents the crystal to isotropic liquid melting point is high and the solubility in water is very low, compared to other similar chain length nonionic surfactants. In addition, saturated n-alkyl urea surfactants do not form lyotropic liquid crystalline phases in water. In this work the strong intermolecular hydrogen bonding of the urea headgroup has been ameliorated through the introduction of unsaturated hydrocarbon chains, viz., oleyl (cis-octadec-9-enyl), linoleyl (cis, cis-octadec-9,12-dienyl), and linolenyl (cis, cis, cis-octadec-9,12,15-trienyl) with one, two, and three carbon double bonds, respectively. Unsaturation in the C18 urea surfactants lowers the melting point and promotes an inverse hexagonal phase, in oleyl urea-water and linoleyl urea-water systems, which is thermodynamically stable in excess water. As the degree of unsaturation is increased to three in linolenyl urea, there is a tendency for autoxidation/polymerization. The occurrence of an inverse hexagonal phase in the nonionic urea surfactant-water systems has been rationalized in terms of both local molecular and global self-assembled aggregate packing constraints.  相似文献   

10.
Aggregation of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer, Pluronic P123, is promoted in a room temperature ionic liquid, ethylammonium nitrate (EAN). A series of lyotropic mesophases including normal micellar cubic (I1), normal hexagonal (H1), lamellar (Lalpha), and reverse bicontinuous cubic (V2) are identified at 25 degrees C by using polarized optical microscopy and small-angle X-ray scattering techniques. Such self-assembly behavior of P123 in EAN is similar to those observed in H2O or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMim(+)][PF6(-)]) systems except for the presence of the V2 phase in EAN and the absence of the I 1 phase in [BMim(+)][PF6(-)]. This suggests that the ionic solvent of EAN plays similar roles as H2O and [BMim(+)][PF6(-)] during the aggregation process and solvates the PEO blocks through hydrogen-bond interaction. Furthermore, the hydrogen bonds are considered to form between the ethylammonium cations and oxygen atoms of the PEO blocks as confirmed by Fourier transform infrared spectra of P123-EAN assemblies. This deduction is also consistent with the results from differential scanning calorimetry and thermogravimetric analysis. The additional V2 phase appearing in the P123-EAN system is attributed to the higher affinity for the relatively hydrophobic PPO blocks to EAN than to water, which might reduce the effective area of the solvophilic headgroup and increase the volume of the solvophobic part. The obtained results may help us to better understand the self-assembly process for amphiphilic block copolymers in protic solvents.  相似文献   

11.
A range of protic ionic liquids (PILs) have been identified as being capable of supporting the self-assembly of the nonionic surfactants myverol 18-99 K (predominantly monoolein) and phytantriol. PIL-surfactant penetration scans have provided a high throughput technique to determine which lyotropic liquid crystalline phases were formed in the 40 PIL-surfactant systems investigated. Lamellar, inverse hexagonal, and bicontinuous cubic phases that are stable in excess PIL have been observed in surfactant-PIL systems. The studied PILs possess a wide range of solvent properties, including surface tension and viscosity. The nature of the formed amphiphile self-assembly phases is discussed in terms of the PIL structure and solvent properties.  相似文献   

12.
Lignin is a component of lignocellulosic biomass and a promising matrix for recovering important renewable aromatic compounds. We present a new approach of electro-oxidative cleavage of lignin, dissolved in a special protic ionic liquid, using an anode with particular electro-catalytic activity. As appropriate ionic liquid triethylammonium methanesulfonate was identified, synthesised, explored for dissolution of alkali-lignin and used for electrolysis of 5 wt.% lignin solutions. As appropriate anode material, oxidation-stable ruthenium-vanadium-titanium mixed oxide electrodes were prepared and explored for their electro-catalytic activity. The electrolysis was performed at several potentials in the range from 1.0 V to 1.5 V (vs. an Ag pseudo reference electrode). A wide range of aromatic fragments was identified as cleavage products by means of GC-MS and HPLC measurements.  相似文献   

13.
The formation and the properties of wormlike micelles in aqueous solutions of mixed cationic and anionic gemini surfactants, 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3(OH)-12) and O,O'-bis(sodium 2-dodecylcarboxylate)-p-benzenediol (C(12)?C(12)), have been studied by steady-state and dynamic rheological measurements at 25°C. With the addition of a small amount of C(12)?C(12) into the solution of 12-3(OH)-12, the total surfactant concentration of which was always kept at 80 mmol L(-1), the solution viscosity was strongly enhanced and its maximum was much larger than that of the mixed system of propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3-12) and C(12)?C(12). The results of dynamic rheology measurements showed that 12-3(OH)-12/C(12)?C(12) formed longer wormlike micelles in comparison with 12-3-12/C(12)?C(12). This was attributed to the effect of hydrogen bonding occurring between 12-3(OH)-12 molecules, which was an effective driving force promoting micellar growth. As few C(12)?C(12) participated in the micelles, the electrostatic attraction between the oppositely charged head groups of 12-3(OH)-12 and C(12)?C(12) made the molecules in the aggregates pack more tightly. This reinforced the hydrogen-bonding interactions and greatly promoted the micellar growth.  相似文献   

14.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   

15.
The nanostructure of the ethanolammonium nitrate (EtAN)-air surface has been investigated using X-ray reflectometry (XRR), vibrational sum frequency spectroscopy (VSFS) and neutral impact collision ion scattering spectroscopy (NICISS). The XRR data decays more rapidly than expected for a perfectly sharp interface, indicating a diffuse electron (scattering length) density profile. Modelling of the XRR data using three different fitting routines produced consistent interfacial profiles that suggest the formation of interfacial EtAN clusters. Consistent with this, VSFS reveals that the EtAN surface is predominantly covered by -CH(2)- moieties, with the -NH(3)(+) and -OH groups of the cation buried slightly deeper in the interface. The elemental profiles determined using NICISS also show enrichment of carbon relative to nitrogen and oxygen in the outermost surface layer, which is consistent with the surface cation orientation deduced from VSFS, and with the presence of EtAN aggregates at the liquid surface.  相似文献   

16.
Cationic gemini surfactants, N,N-bis(dimethylalkyl)-alpha,omega-alkanediammonium dibromide [C(m)H(2m+1)(CH(3))(2)N(+)(CH(2))(s)N(+)(CH(3))(2)C(m)H(2m+1) x 2 Br(-), or m-s-m], have proven to be effective synthetic vectors for gene delivery (transfection). Complexes (lipoplexes) of gemini compounds, where m = 12, s = 3, 12 and m = 18 : 1(oleyl), s = 2, 3, 6, with DNA have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM) and circular dichroism (CD) techniques. The results show that lipoplex properties depend on the structural properties of the gemini surfactants, the presence of the helper lipid dioleoylphosphatidylethanolamine (DOPE), and the titration sequence. ITC data show that the interaction between DNA and gemini surfactants is endothermic and the observed enthalpy vs. charge ratio profile depends upon the titration sequence. Isoelectric points (IP) of lipoplex formation were estimated from the zeta potential measurements and show good agreement with the reaction endpoints (RP) obtained from ITC. DLS data indicate that DNA is condensed in the lipoplex. AFM images suggest that the lipoplex morphology changes from isolated globular-like aggregated particles to larger-size aggregates with great diversity in morphology. This change is further accentuated by the presence of DOPE in the lipoplexes. The results are interpreted in terms of some current models of lipoplex formation.  相似文献   

17.
Aryl C-glycosylation of several glycosyl donors, including unprotected sugars, with phenol and naphthol derivatives in an ionic liquid containing a protic acid proceeded effectively and stereoselectively to give the corresponding aryl C-glycosides in good to high yields. Because the ionic liquid was nonvolatile, the reaction could be carried out under reduced pressure; in addition, the ionic liquid could be reused without loss of effectiveness. These features contribute to the significant advantages of this novel aryl C-glycosylation reaction.  相似文献   

18.
Experimental evidence for the existence of a first order transition between Nc-Nd uniaxial lyonematic phases as a function of the variable Md (number of decanol molecules per amphiphilic molecule) is reported. The relevance of this evidence to molecular models for micellar aggregates is discussed. The evidence is for a change in micellar symmetry at this transition.  相似文献   

19.
Six novel gemini imidazolium salts tethered with hexaalkoxytriphenylene moieties were prepared by quaternization of imidazole nitrogen with ω-bromo-substituted triphenylene derivatives. Their chemical structures were examined by 1H NMR, IR, UV, MS, and elemental analyses. The mesomorphic properties of these discotic dimeric salts were investigated by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction studies. These triphenylene-imidazole-based gemini dimers with bromide as counter ion were found to exhibit liquid crystalline behavior over a wide temperature range and display ionic conductivity in the range of 10−6 to 10−5 S/m. These materials tend to form monolayer at the air-water interface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号