首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A binder-free activated carbon paper (ACP) was simply prepared for electric double-layer capacitors by the carbonization of filter paper, followed by heat-air activation at a lower temperature. The electrochemical cells assembled using the as-prepared ACP-470 provides a high specific capacitance of 296.4 F g?1 at current density of 0.5 A g?1 and a high rate performance at a current density of 150 A g?1 with a capacitance of 191.2 F g?1 and a high cycle ability at 10,000 recycles with 100 % capacitance retention. In addition, the ACP has a lower electrical resistivity and provides an effective energy storage performance with a maximum energy density of 41.2 Wh kg?1 and a maximum power density of 138.0 kW kg?1 in a voltage range of 1 V.  相似文献   

2.
Improvements in the energy density of electric double-layer capacitors (EDLCs) can in particular be gained by enhancing their capacitance. Recent findings suggest that the specific capacitance can be increased by matching the sizes of pores and desolvated ions. However, on such matching, we evidenced that charge storage saturation can occur in organic electrolyte before reaching the maximum voltage, e.g. 2.7 V, due to the insufficiently developed porosity. The experimental charge is larger than the calculated on account of the size of rigid cations, because of the intercalation-like behaviour and/or distortion of ions. The experimental and calculated values are less coincident for the higher sweep rates, which reveals that the optimal average pore size should depend on the current load, tending to shift to higher values in the normal usage conditions of supercapacitors.  相似文献   

3.
Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer was employed as a soft template, and tetraethylorthosilicate-generated silica was used as hard templates to synthesize spherical mesoporous carbon. The resulting spherical mesoporous carbons were characterized by nitrogen adsorption–desorption isotherms and electron microscopy (SEM and TEM) and used as electrode materials for aqueous electric double-layer capacitors. The average diameters of spherical particles ranged from 2 to 7 μm and the mesopore was ca 2 nm. The highest specific surface area of 1,000 m2/g and mesopore volume of 0.86 cm3/g was obtained. The specific capacitance of 130 F/g was obtained by means of galvanostatic charging/discharging and cycle voltammetry.  相似文献   

4.
An electric double-layer capacitor (EDLC) was assembled with the polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) (PAAK) and KOH aqueous solution, and the self-discharge characteristics were investigated. The EDLC cell with the polymer hydrogel electrolyte showed lower voltage decay on open circuit than that with a KOH aqueous solution. Moreover, it was found that the leakage current of the EDLC cell was markedly suppressed by using the polymer hydrogel electrolyte. The suppression was enhanced with increasing PAAK content in the electrolyte. These results strongly suggest that the PAAK plays an important role in the suppression of self-discharge.  相似文献   

5.
A commercial activated carbon was used as catalyst support in Pd/AC catalysts. The effects of the different surface oxygen groups and textural properties of the carbon supports on the metal dispersion of the supported catalysts were analyzed.  相似文献   

6.
In this work, the electrical double-layer capacitive properties of nitrogen-doped ordered mesoporous carbons (N-OMCs) were investigated. Ordered mesoporous carbons (OMCs) with 3D body-centered Ia3d structure has been prepared by KIT-6 mesoporous silica as a hard template with aniline for N-OMC and sucrose for Su-OMC as a carbon precursor. Using the different carbon precursor, moderate amounts of nitrogen atoms could be doped to the OMC structures. The obtained materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption isotherms at 77 K, elemental analysis, and X-ray photoelectron spectroscopy (XPS). Prepared OMCs had mesopore properties such as a high surface area with narrow pore-size distribution. From cyclic voltammograms (CVs) test, N-OMC compared to Su-OMC exhibit higher capacitance and fast charge/discharge characteristics, which results from their pseudo-capacitive effect of incorporated nitrogen atoms. It was thought that N-OMC prepared by the nanotemplating method with KIT-6 and aniline were suitable electrode materials for electrical double-layer capacitors.  相似文献   

7.
The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.  相似文献   

8.
以无灰煤(HyperCoal)为原料,KOH和CaCO3为活化剂制备了煤基活性炭,采用低温N2吸附法表征了活性炭的比表面积和孔结构,测定了活性炭用作双电层电容器(EDLC)电极材料的电化学性能。考察了炭化温度、活化温度、活化时间和活化剂对活性炭电容特性的影响。研究结果表明,比表面积和比电容随着炭化温度的升高而降低,活化温度过高或活化时间太长对比电容有不利影响。此外,CaCO3影响活化过程中孔的开发,显著降低所制备活性炭的比表面积和比电容。在炭化温度为500℃、活化温度为800℃、KOH与焦的质量比为4∶1和活化时间2 h下所得活性炭的比表面积和总孔容分别达到2 540 m2/g和1.65 cm3/g,该活性炭电极在0.5 mol/L TEABF4/PC电解液中的比电容达到最大值46.0 F/g。  相似文献   

9.
Adsorption of methyl mercaptan on surface modified activated carbon   总被引:2,自引:0,他引:2  
The influence of surface modification of activated carbon on the adsorption of methyl mercaptan in N(2) was investigated. The modification of the activated carbon was carried out by treatment with HNO(3)/H(2)SO(4) solutions, heat-treatment in Ar, and adsorption of cetylamine. Acid-treatment increased the adsorption of methyl mercaptan compared with the original activated carbon, and the adsorbed amounts increased with ratio of H(2)SO(4) in HNO(3)/H(2)SO(4) solutions. This result suggests that hydrogen bonding between acidic groups formed by acid-treatment and thiol groups of methyl mercaptan plays a role in adsorption of methyl mercaptan on activated carbon.  相似文献   

10.
Several carbon supported Pt catalysts were prepared by varying surface properties of support and tested for methylene chloride oxidation. They were investigated by BET, TPD, pH analysis and XPS. The Pt species would stabilize when the surface carbon was pregraphitized due to the π sites of basal plane. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
改性活性炭表面羧基的催化动力学分析   总被引:3,自引:0,他引:3  
采用催化动力学分析法测定了浓HNO3或H2O2改性处理的活性炭表面羧基。选择环氧苯乙烷和甲醇在苯甲酸或改性活性炭催化下的加成反应为指示反应,采用固定时间法考察了环氧苯乙烷转化率与催化剂用量关系。结果表明:在反应初始阶段(转化率低于25%),当苯甲酸用量在O.2~0.6mmol、活性炭用量在0.4~0.8g范围内时,环氧苯乙烷的转化率随反应时间的变化为过原点的直线。以苯甲酸羧基量为参照,浓HNO3与H2O2氧化改性活性炭的表面羧基的质量摩尔浓度分别为0.67mmol/g和0.34mmol/g。与经典的Boehm滴定法相比,此法准确地反映了实际液-固反应中活性炭的表面羧基量。  相似文献   

12.
Graphitized carbon electrode material was prepared from wastepaper by graphitization in molten sodium metal. X-ray diffraction and Raman spectroscopy were used to investigate the structural change of resulted carbons, both of which well proved the formation of graphite structure. Graphitized carbons have surface area that is nearly 26 times larger than initial carbonized paper and exhibit better electrochemical performances. The electrochemical performances of graphitized carbons were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge methods. The cyclic voltammetry results show a maximum specific capacitance of 194 F g?1. Therefore, wastepaper can be a promising electrode material for high-performance electric double-layer capacitors (EDLCs).  相似文献   

13.
14.
Adsorption properties of activated carbons prepared from waste newspaper by chemical and physical activation were investigated using water vapor, ammonia, methane, and methylene blue (MB) as adsorbents. The water vapor adsorption isotherms show type V behavior and the maximum vapor adsorption of the chemically and physically activated products is about 1050 and 450 ml/g, respectively. The higher water vapor adsorption of the chemically activated products is attributed to the higher specific surface area (S(BET)) and greater hydrophilic activity (arising from the surface oxygen-containing functional groups) than in the physically activated products. The adsorption of ammonia and methane was measured by temperature-programmed desorption (TPD). NH(3) adsorption is found to be higher in the chemically activated product than in the physically activated product while methane adsorption is slightly higher in the physically activated products even though these have lower S(BET) values. In the MB adsorption, the chemically activated products show higher adsorption (390 mg/g) than the physically activated product. These results are suggested to be related to the surface characteristics.  相似文献   

15.
This study has demonstrated the use of empirical modeling in resolving the effects of individual carbon properties on acid blue dye adsorption. Acid blue dye adsorption tests were conducted on activated carbons prepared from bagasse by physical (CO2) and chemical (ZnCl2, MgCl2 and CaCl2) techniques. Empirical models based on the carbon textural (surface area and pore size) properties and the surface chemistry inferred from heteroatom (C,H, N, and S) concentration and carbon surface pH were used to resolve the effects of individual carbon properties on acid blue dye adsorption. This form of analysis was conducted to optimize carbon preparation properties, forming the foundation for tailor-making adsorbents from bagasse suitable for acid dye adsorption. A series of statistical analyses (partial F-tests to establish the parameter significance) measured variants including the mean square error, r2 and adjusted r2, normality, and randomness of residuals, and formed the basis for testing the adequacy of these models. The empirical models suggest that a combination of suitable pore structure and distinct basic surface chemistry generated by sulfur- and nitrogen-based groups, which were also elucidated by Fourier transform infrared spectroscopy, is necessary to promote acid dye adsorption.  相似文献   

16.
A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate.The activated carbon was modified by nitric acid,vitriol and peroxyacetic acid(PAA).The effect on specific area, structure,pH and surface acidity groups of carriers by modification was discussed.Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment.The productivity of the new catalyst was 14.58%higher than that of...  相似文献   

17.
Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized product. The as-prepared materials possess a large specific surface area, unique structure, well- developed hierarchical porosity and plentiful heteroatoms(mainly O and N). Thus resulted in its high specific capacitance,good rate capacity and cycling stability. Moreover, attributing to worldwide availability, renewable nature and low-cost, activated carbon prepared from soyabean has a good potential in energy conversion and storage devices.  相似文献   

18.

Activated carbon modified by ozone treatment was examined. The process was carried out in a glass reactor under a continuous flow of ozone through a bed of activated carbon for 15, 30, 60, 120, and 240 min. The modified and unmodified carbon materials were characterized by Raman spectroscopy and observed by scanning electron microscopy (SEM). Thermogravimetric analysis was used to estimate the presence of oxygen groups in the carbon structure. The surface area and pore size distribution were examined by nitrogen adsorption method at 77 K. Moreover, Fourier transform infrared (FTIR) spectroscopy was used to estimate the functional groups of modified activated carbon. The carbon content was estimated using the elemental analysis. The process of ozonation increases oxygen functionalities, thus the activated carbon was tested as electrodes for an electrochemical capacitor. The performance of an electrochemical capacitor was estimated by selected alternating (AC) and direct current (DC) methods in 1 M H2SO4, 1 M Na2SO4, and 6 M KOH electrolytes.

  相似文献   

19.
Platinum (Pt) loaded activated carbons (ACs) were synthesized by the thermal decomposition of platinum (II) acetylacetonate (Pt(acac)2) over chemically activated glucose-based biochar. The effect of Pt loading on surface area, pore characteristics, surface chemistry, chemical structure, and surface morphology were determined by various techniques. XPS studies proved the presence of metallic Pt0 on the AC surface. The graphitization degree of Pt loaded ACs were increased with the loaded Pt0 amount. The electrochemical performance of the Pt-loaded ACs (Pt@AC) was determined not only by the conventional three-electrode system but also by packaged supercapacitors in CR2032 casings. The capacitive performance of Pt@AC electrodes was investigated via cyclic voltammetry (CV), galvanostatic charge-discharge curves (GCD), and impedance spectroscopy (EIS). It was found that the Pt loading increased the specific capacitance from 51 F/g to 100 F/g. The ESR drop of the packaged cell decreased with the Pt loading due to the fast flow of charge through the conductive pathways. The results showed that the surface chemistry is more dominant than the surface area for determining the capacitive performance of Pt loaded AC-based packaged supercapacitors.  相似文献   

20.
Using commercially activated carbon, we developed a simple and effective direct chemical oxidation route to prepare good biocompatible multicolor photoluminescent carbon dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号