首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A miniaturized post-column fluorimetric detection cell for capillary separation methods based on optical fibers and liquid core waveguides (LCWs) is described. The main part of the detection cell is a fused-silica capillary coated with Teflon AF serving as an LCW. The optical fibers are used both for coupling the excitation source with the detection domain in the LCW and for the axial fluorescence collection from the LCW end. The latter fiber is connected with a compact CCD spectrometer that serves for the rejection of the scattered excitation light and for the fluorescence signal detection. The proposed design offers a compact fluorescence detector for various microcolumn separation techniques without optical elements such as filters or objectives. Moreover, its construction and optical adjustment are very simple and the whole system is highly miniaturized. The function of the detection cell is demonstrated by CE of amino acids labelled by fluorescein-based tags. Separations of different standard amino acid mixtures and plasma samples are presented. The comparison of plasma amino acid levels of individuals being in good health with those of patients with inherited metabolic disorders is also shown.  相似文献   

2.
Wang SL  Fan XF  Xu ZR  Fang ZL 《Electrophoresis》2005,26(19):3602-3608
A miniaturized CE system has been developed for fast DNA separations with sensitive fluorimetric detection using a rectangle type light-emitting diode (LED). High sensitivity was achieved by combining liquid-core waveguide (LCW) and lock-in amplification techniques. A Teflon AF-coated silica capillary on a compact 6x3 cm baseplate served as both the separation channel for CE separation and as an LCW for light transmission of fluorescence emission to the detector. An electronically modulated LED illuminated transversely through a 0.2 mm aperture, the detection point on the LCW capillary without focusing, and fluorescence light was transmitted to the capillary outlet. To simplify the optics and enhance collection of light from the capillary outlet, an outlet reservoir was designed, with a light transmission window, positioned directly in front of a photomultiplier tube (PMT), separated only by a high pass filter. Automated sample introduction was achieved using a sequential injection system through a split-flow interface that allowed effective release of gas bubbles. In the separation of a phiX174 HaeIII DNA digest sample, using ethidium bromide as labeling dye, all 11 fragments of the sample were effectively resolved in 400 s, with an S/N ratio comparable to that of a CE system with more sophisticated LIF.  相似文献   

3.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

4.
An improved automated continuous sample introduction system for microfluidic capillary electrophoresis (CE) is described. A sample plate was designed into gear-shaped and was fixed onto the shaft of a step motor. Twenty slotted reservoirs for containing samples and working electrolytes were fabricated on the “gear tooth” of the plate. A single 7.5-cm long Teflon AF-coated silica capillary serves as separation channel, sampling probe, as well as liquid-core waveguide (LCW) for light transmission. Platinum layer deposited on the capillary tip serves as the electrode. Automated continuous sample introduction was achieved by scanning the capillary tip through the slots of reservoirs. The sample was introduced into capillary and separated immediately in the capillary with only about 2-nL gross sample consumption. The laser-induced fluorescence (LIF) method with LCW technique was used for detecting fluorescein isothiocyanate (FITC)-labeled amino acids. With electric-field strength of 320 V/cm for injection and separation, and 1.0-s sample injection time, a mixture of FITC-labeled arginine and leucine was separated with a throughput of 60/h and a carryover of 2.7%.  相似文献   

5.
A capillary electrophoresis fluorescence detector is described. A high-pressure mercury lamp with a filter block allowed the selection of a particular excitation waveband. Detection was performed on-column, the fluorescence emission was monitored and measured with a silicon photodiode detector with a built-in amplifier. The concentration limit of detection (CLOD) of 0.4 ng/mL was obtained for rhodamine B, a fluorescent indicator. Based on an estimated injection volume of 2.5 nL, the mass limit of detection (MLOD) was 2.1×10–18 mol. The separation of three fluorescent indicators: thionine, eosin yellowish and rhodamine B, was achieved in less than 6 min. The separation of nine porphyrin-free acids using the system developed was also demonstrated. The advantages and potential of using an epi-illumination microscope as a versatile and sensitive fluorescence detection system for capillary electrophoresis are described.  相似文献   

6.
A novel fluorescence detection system for CE was described and evaluated. Two miniature laser pointers were used as the excitation source. A Y‐style optical fiber was used to transmit the excitation light and a four‐branch optical fiber was used to collect the fluorescence. The optical fiber and optical filter were imported into a photomultiplier tube without any extra fixing device. A simplified PDMS detection cell was designed with guide channels through which the optical fibers were easily aligned to the detection window of separation capillary. According to different requirements, laser pointers and different filters were selected by simple switching and replacement. The fluorescence from four different directions was collected at the same detecting point. Thus, the sensitivity was enhanced without peak broadening. The fluorescence detection system was simple, compact, low‐cost, and highly sensitive, with its functionality demonstrated by the separation and determination of red dyes and fluorescent whitening agents. The detection limit of rhodamine 6G was 7.7 nM (S/N = 3). The system was further applied to determine illegal food dyes. The CE system is potentially eligible for food safety analysis.  相似文献   

7.
It was reported that a novel detection method, continuous wave (CW)-based multiphoton excitation (MPE) fluorescence detection with diode laser (DL), has been firstly proposed for capillary electrophoresis (CE). Special design of end-column detection configuration proved to be superior to on-column type, considering the detection sensitivity. Three different kinds of fluorescent tags that were widely used as molecular label in bio-analysis, such as small-molecule dye, fluorescent protein and nano particle or also referred to as quantum dot (QD), have been evaluated as samples for the constructed detection scheme. Quantitative analyses were also performed using rhodamine species as tests, which revealed dynamic linear range over two orders of magnitude, with detection limit down to zeptomole-level. Simultaneous detection of fluorescent dyestuffs with divergent excitation and emission wavelengths in a broad range showed advantage of this scheme over conventional laser-induced fluorescence (LIF) detection. Further investigations on CW-MPE fluorescence detection with diode laser for capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations of fluorescein isothiocyanate (FITC) labeled amino acids indicated good prospect of this detection approach in various micro or nano-column liquid phase separation technologies.  相似文献   

8.
Minisequencing, solid-phase single-nucleotide primer extension reaction, is a robust method for performing multiplex single-nucleotide polymorphism (SNP) analysis. We have combined this technology with capillary gel electrophoresis in a multicapillary format, using liquid core waveguide (LCW) fluorescence detection. Polymerase chain reaction (PCR) amplification of multiple DNA targets is performed with one primer for each target biotinylated. Separation of the complementary strands, minisequencing and washing steps are carried out using streptavidin-coated magnetic beads. Dideoxynucleotides analogues labelled with different fluorophores are used for the extension of the minisequencing primers. The extended oligonucleotides, the length of which defines the position on the target and the color the identity of the polymorphism, are then separated in a gel-filled array of capillaries, coated on the outside with a layer of a fluoropolymer to provide the liquid core waveguide characteristics. The technology has a potential for extremely high throughputs when a combination of multiplex PCR-minisequencing is used together with a large array of capillaries, four-color detection and high-speed separation.  相似文献   

9.
Yu CZ  He YZ  Han F  Fu GN 《Journal of chromatography. A》2007,1171(1-2):133-139
A post-column reactor with coaxial-gap mode is developed for laser-induced fluorescence detection (LIF) in capillary electrophoresis (CE). The reactor can be assembled simply and conveniently, in which a thin polyimide sleeve of 10-mm length obtained from the capillary coating is used to align separation and reaction capillary with a 20 microm gap. Naphthalene-2,3-dicarboxaldehyde and 2-mercaptoethanol are used as derivatization reagents and delivered into the reaction capillary through the annulus between the separation capillary and polyimide sleeve and the gap of two capillaries by gravity. A reaction distance from the gap to detection point is 5mm. For the post-column reactor of CE-LIF, several configuration parameters are optimized, including liquid level difference between the derivatization solution and outlet buffer, annular dimension between the outer diameter of etched separation capillary and the inner diameter of polyimide sleeve, and reaction distance, etc. The detection limits in the range from 8.0x10(-8) to 1.0x10(-6) mol/L and linear calibration range more than two orders of magnitude are obtained for amino acids. The separation efficiency ranges from 1.35x10(5) to 1.67x10(5) theoretical plates.  相似文献   

10.
A unique integrated separation-based fiber-optic sensor for remote analysis, that incorporates capillary electrophoresis (CE) directly at the fiber sensing terminus is described for the first time. Based on laser-induced fluorescence detection, the sensor offers the potential for high sensitivity. Although the broad-band nature of fluorescence spectra limits selectivity, the high separation power of CE provides a unique dimension of selectivity, while permitting a design of diminutive size. Previously reported fluorescence-based sensors that utilize a chemical reagent phase to impart selectivity tend to be inflexible (not readily adaptable to the detection of different species) and "one-measurement-only" sensors. Conversely, the CE-based fiber-optic sensor described here is both versatile and reusable. The analysis speed and the potential for remote control are further attributes which make the system amenable to remote sensing. A "single-fiber" optical detection arrangement and a "single-reservoir" CE system with the fiber-optic probing the outlet of the separation capillary are employed. A preliminary evaluation of the separation characteristics of this CE-based sensor is presented. Highlights include an observed separation efficiency of up to 3000 theoretical plates (8 cm separation capillary) and migration time reproducibility of less than 10% for frontal mode CE separations. The potential utility of the sensor for remote analysis is demonstrated with separations involving the CE analysis of charged fluorescent dyes, CE analysis of metal complexes based on in situ complexation and micellar electrokinetic capillary chromatographic analysis of neutral fluorescent compounds.  相似文献   

11.
Okada T 《Electrophoresis》2007,28(19):3414-3419
Liquid-core waveguide (LCW) brings about several advantages in CE. This review discusses some aspects of fundamental and practical importance involved in this method. Sensitivity in absorption and fluorescence detection is in general improved by more than one order of magnitude over usual crossbeam detection arrangements; the improvements come from the long light path in absorption detection and low light scattering in fluorescence detection. Versatile instrumental arrangements are another advantage of LCW in CE, leading to several detection schemes, some of which provide information that is not gained by usual capillary-end crossbeam detection, e.g. whole-capillary imaging, simultaneous monitoring of multicapillary separation, and kinetic evaluation. The high potential and perspectives of LCW in CE are discussed based on the state-of-the-art developments.  相似文献   

12.
This paper reviews analytical methods, instrumental developments and applications for derivatization of primary amines with naphthalene-2,3-dicarboxaldehyde using fluorescence and chemiluminescence detection with capillary electrophoresis (CE) and high performance liquid chromatography (HPLC). The use of lasers as well as lamps as the excitation source for fluorescence detection is discussed. The detection limit observed with naphthalene-2,3-dicarboxaldehyde derivatization is often lower and better than those obtained with other analytical separations and other fluorescent dyes. In addition, this paper describes the crucial points that influence the stability of NDA primary amine derivatives, and summarize the separation, derivatization and migration conditions of the different techniques, with their advantages and drawbacks.  相似文献   

13.
Single strand conformation polymorphism (SSCP) analysis of the N-ras oncogene was achieved by capillary electrophoresis with a laser-induced fluorescence detector (CE-LIF) using methylcellulose as a molecular sieving agent. The PCR-amplified N-ras oncogene, which is known to have a point mutation at codon 61 in the neuroblastoma, was investigated by CE-LIF combined with SSCP (SSCP-CE-LIF). A mixture of wild- and mutant-type single strand DNA fragments (103 bp) of the N-ras oncogene was separated by buffer solution containing 1.0% methylcellulose and 0.2 microM fluorescent dye (YO-PRO-1) at 25 degrees C. The SSCP-CE-LIF technique gave good resolution for wild- and mutant-type single strand DNA fragments with separation completed within 7 min. SSCP analysis using a CE system with a LIF detector was successfully applied to the detection of the one point mutation on the N-ras oncogene.  相似文献   

14.
Mao Y  Zhang X 《Electrophoresis》2003,24(18):3289-3295
A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.  相似文献   

15.
A detection system based on on-line post-column fluorescence derivatization is described for the determination of N-terminal tyrosine-containing peptides by reversed-phase high-performance liquid chromatography. The peptides are automatically converted into fluorescent derivatives by reaction with hydroxylamine, cobalt (II) and borate after peptide separation on a reversed-phase column (TSKgel ODS-120T) followed by passage through an ultraviolet absorbance detector. The reaction system permits the fluorescence detection at 435 nm (emission) with excitation at 335 nm for N-terminal tyrosine-containing synthetic peptides in as little as picomole amounts. The facile fluorescence detection of N-terminal tyrosine-containing fragments produced from methionine-enkephalin by enzymatic degradation using a rat brain homogenate was achieved by comparison with the ultraviolet absorption detection at 215 nm.  相似文献   

16.
Immunoassays are commonly used in bioresearch for the detection and quantification of small proteins and macromolecules in biological fluids and other complex matrices. In this report, a competitive immunoassay using capillary electrophoresis (CE) with laser-induced fluorescence was developed for methionine-enkephalin (ME). The method is based on the competitive reaction between the ME and fluorescein conjugated ME (ME-F) with anti-ME antibody, capillary electrophoresis separation of the ME-antibody bound and free ME-F, followed by the laser-induced fluorescence detection of the fluorescent species. With the optimized separation conditions, it was possible to separate the antibody bound and free fluorescien conjugated ME by a capillary electrophoresis-laser-induced fluorescence (CE-LIF) analysis using an uncoated fused-silica capillaries. The results concluded that the assay specificity, selectivity and accuracy were excellent.  相似文献   

17.
A versatile, simple, liquid core waveguide (LCW)-based fluorescence detector design is described for capillary systems. A Teflon AF coated fused silica capillary serves as the LCW. The LCW is transversely excited. The light source can be a conventional or high power (HP) light emitting diode (LED) or a laser diode (LD). The source can be coupled to the LCW directly or via an optical fiber. Fiber coupling is convenient if a high power (necessarily heat sink mounted) emitter is used. The LCW is concentrically placed within a slightly larger opaque jacket tube and the LCW terminates just short of the jacket terminus, which is sealed with an optical window. The influent liquid thus exits the LCW tip, flows back around the LCW through the jacket annulus to exit via an aperture on the jacket tube. The problem of coupling the emitted light efficiently to the photodetector is thus solved by placing the tip of the annular tubular assembly directly on the detector.For excitation wavelengths of 365 nm (LED/HPLED) and 405 nm (LD), the tris(8-hydroxyquinoline-5-sulfonic acid (sulfoxine)) chelate of aluminum (λem,max ∼ 500 nm) and Coumarin 30 were respectively used as the model analyte. For source-detector combinations comprising (a) a UV LED (∼1.5 mW @ 15 mA) and a photodiode, (b) a LD (∼5 mW, abstracted from a “Blu-Ray” recorder) and a miniature photomultiplier tube (mPMT), and (c) a high power (210 mW @ 500 mA) surface-mount HPLED-mPMT, the S/N = 3 LODs were, respectively, 1.7 pmol Al, 3-100 fmol Coumarin 30 (depending on laser intensity and integration time), and 4 fmol Al. In the last case, the relative standard derivation (R.S.D.) at the 20 fmol level was 1.5% (n = 10).  相似文献   

18.
The gradient of five dansylated amino acids in a capillary-based separation system commonly used in capillary liquid chromatography (LC) or capillary electrochromatography (CEC) was followed and examined in detail using a detection method based on laser-induced fluorescence imaging. The detection system consisted of an XeCl excimer laser and an image-intensified charge-coupled device (CCD) camera. Fluorescence intensity profiles along the capillary column were displayed and continuously updated on a computer screen. The detector system enabled the separation dynamics in the column to be monitored. The experiments were focused on the course of events, especially at interfaces. The processes occurring at the beginning of the reversed-phase packing material were studied as well as at the transition from stationary phase to the outlet frit and the open tubular area. Striking differences in signal intensity and separation efficiency were revealed depending on where on the column detection was performed. Furthermore, adsorption of the analytes on the frits was observed.  相似文献   

19.
One way to profile complex mixtures for receptor affinity is to couple liquid chromatography (LC) on-line to biochemical detection (BCD). A drawback of this hyphenated screening approach is the relatively high consumption of sample, receptor protein and (fluorescently labeled) tracer ligand. Here, we worked toward minimization of sample and reagent consumption, by coupling nano-LC on-line to a light-emitting diode (LED) based capillary confocal fluorescence detection system capable of on-line BCD with low-flow rates. In this fluorescence detection system, a capillary with an extended light path (bubble cell) was used as a detection cell in order to enhance sensitivity. The technology was applied to a fluorescent enhancement bioassay for the acetylcholine binding protein, a structural analog of the extracellular ligand-binding domain of neuronal nicotinic acetylcholine receptors. In the miniaturized setup, the sensitive and low void volume LED-induced confocal fluorescence detection system operated in flow injection analysis mode allowing the measurement of IC50 values, which were comparable with those measured by a conventional plate reader bioassay. The current setup uses 50 nL as injection volume with a carrier flow rate of 400 nL/min. Finally, coupling of the detection system to gradient reversed-phase nano-LC allowed analysis of mixtures in order to identify the bioactive compounds present by injecting 10 nL of each mixture.  相似文献   

20.
In the present study, 11 4,4′‐diaminostilbene‐2,2′‐disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high‐performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04–0.07 ng/mL) and wide linearity ranges (0.30–20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85–105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号