首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multicopper oxidases are a family of enzymes that couple the reduction of O(2) to H(2)O with the oxidation of a range of substrates. Saccharomyces cerevisiae Fet3p and human ceruloplasmin (hCp) are members of this family that exhibit ferroxidase activity. Their high specificity for Fe(II) has been attributed to the existence of a binding site for iron. In this study, mutations at the E185 and Y354 residues, which are putative ligands for iron in Fet3p, have been generated and characterized. The effects of these mutations on the electronic structure of the T1 Cu site have been assessed, and the reactivities of this site toward 1,4-hydroquinone (a weak binding substrate) and Fe(II) have been evaluated and interpreted in terms of the semiclassical Marcus theory for electron transfer. The electronic and geometric structure of the Fe(II) substrate bound to Fet3p and hCp has been studied for the first time, using variable-temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopy. The iron binding sites in Fet3p and hCp appear to be very similar in nature, and their contributions to the ferroxidase activity of these proteins have been analyzed. It is found that these iron binding sites play a major role in tuning the reduction potential of iron to provide a large driving force for the ferroxidase reaction, while still supporting the delivery of the Fe(III) product to the acceptor protein. Finally, the analysis of possible electron-transfer (ET) pathways from the protein-bound Fe(II) to the T1 Cu site indicates that the E185 residue not only plays a role in iron binding, but also provides the dominant ET pathway to the T1 Cu site.  相似文献   

2.
The multicopper oxidase Fet3p couples four 1e(-) oxidations of substrate to the 4e(-) reduction of O2 to H2O. Fet3p uses four Cu atoms to accomplish this reaction: the type 1, type 2, and coupled binuclear type 3 sites. The type 2 and type 3 sites together form a trinuclear Cu cluster (TNC) which is the site of O2 reduction. This study focuses on mutants of two residues, E487 and D94, which lie in the second coordination sphere of the TNC and defines the role that each plays in the structural integrity of the TNC, its reactivity with O2, and in the directional movement of protons during reductive cleavage of the O-O bond. The E487D, E487A, and D94E mutants have been studied in the holo and type 1 depleted (T1D) forms. Residue E487, located near the T3 center, is found to be responsible for donation of a proton during the reductive cleavage of the O-O bond in the peroxide intermediate and an inverse kinetic solvent isotope effect, which indicates that this proton is already transferred when the O-O bond is cleaved. Residue D94, near the T2 site, plays a key role in the reaction of the reduced TNC with O2 and drives electron transfer from the T2 Cu to cleave the O-O bond by deprotonating the T2 Cu water ligand. A mechanism is developed where these second sphere residues participate in the proton assisted reductive cleavage of the O-O bond at the TNC.  相似文献   

3.
Two new angular trinuclear copper(II) complexes of formulation [Cu(3)(HL)LL'](ClO(4)), where L' is imidazole (Him, 1) or 1-methylimidazole (1-MeIm, 2) and H(3)L is a Schiff base obtained from the condensation of salicylaldehyde and 1,3-diaminopropan-2-ol (2:1 mole ratio), are prepared from a reaction of [Cu(2)L(mu-Br)] and [Cu(HL)] in the presence of L' and isolated as perchlorate salts. The crystal structures of 1 and 2 consist of a trinuclear copper(II) unit formed by the covalent linkage of monomeric type-2 mimic and dimeric type-3 mimic precursor complexes to give an angular arrangement of the metal atoms in the core which is a model for the active site structure of blue multicopper oxidases. In 1 and 2, the coordination geometry of two terminal copper atoms is distorted square-planar. The central copper has a distorted square-pyramidal (4 + 1) geometry. The mean Cu...Cu distance is approximately 3.3 A. The complex has a diphenoxo-bridged dicopper(II) unit with the phenoxo oxygen atoms showing a planar geometry. In addition, the complex has an endogenous alkoxo-bridged dicopper(II) unit showing a pyramidal geometry for the oxygen atom. The 1:1 electrolytic complexes show a d-d band at 607 nm. Cyclic voltammetry of the complexes in MeCN containing 0.1 M TBAP using a glassy carbon working electrode displays a Cu(3)(II)/Cu(2)(II)Cu(I) couple near -1.0 V (vs SCE). The variable temperature magnetic susceptibility measurements in the range 300-18 K show antiferromagnetic coupling in the complexes giving magnetic moments of approximately 3.0 mu(B) at 300 K and approximately 2.1 mu(B) at 18 K for the tricopper(II) unit. The experimental susceptibility data are theoretically fitted using a model with Heisenberg spin-(1)/(2) Hamiltonian for a trimer of spin-(1)/(2) copper(II) ions having two exchange parameters involving the alkoxo-bridged dicopper(II) (J1) and the diphenoxo-bridged dicopper(II) (J2) units, giving J1 and J2 values of -82.7, -73 cm(-1) for 1 and -98.3, -46.1 cm(-1) for 2, respectively. The structural features indicate a higher magnitude of anitiferromagnetic coupling in the alkoxo-bridged unit based on the greater value of the Cu-O-Cu angle in comparison to the diphenoxo-bridged unit. The core structures of 1 and 2 compare well with the first generation model complexes for the active site structure of multicopper oxidases in the oxidized form. The crystal structure of 1 exhibits a lamellar structure with a gap of approximately 7 A containing water molecules in the interlamellar space. Complex 2 forms a hexanuclear species due to intermolecular hydrogen bonding interactions involving two trimeric units. The crystal packing diagram of 2 displays formation of a three-dimensional framework with cavities containing the perchlorate anions.  相似文献   

4.
Type 1 (T1) copper sites promote biological electron transfer and are found in the cupredoxins and a number of copper-containing enzymes including the multi-copper oxidases. A T1 copper site usually has a distorted tetrahedral geometry with strong ligands provided by the thiolate sulfur of a Cys and the imidazole nitrogens of two His residues. The active site structure is typically completed by a weak axial Met ligand (a second weak axial interaction is found in azurin resulting in a trigonal bipyramidal geometry). The axial Met is not conserved and Gln, Phe, Leu and Val are also found in this position. Three of the four ligands at a T1 copper site are situated on a single C-terminal loop whose length and structure varies. Studies are discussed which investigate both the influence of physiologically relevant axial ligand alterations, and also of mutations to the length and structure of the ligand-containing loop, on the properties of T1 copper sites.  相似文献   

5.
6.
Yoon J  Solomon EI 《Inorganic chemistry》2005,44(22):8076-8086
The ground-state electronic and magnetic properties of one of the possible structures of the trinuclear Cu(II) site in the native intermediate (NI) of the multicopper oxidases, the mu(3)-oxo-bridged structure, are evaluated using the C(3)-symmetric Cu(3)(II) complex, mu(3)O. mu(3)O is unique in that no ligand, other than the oxo, contributes to the exchange coupling. However, mu(3)O has a ferromagnetic ground state, inconsistent with that of NI. Therefore, two perturbations have been considered: protonation of the mu(3)-oxo ligand and relaxation of the mu(3)-oxo ligand into the Cu(3) plane. Notably, when the oxo ligand is sufficiently close to the Cu(3) plane (<0.3 Angstroms), the ground state of mu(3)O becomes antiferromagnetic and can be correlated to that of NI. In addition, the ferromagnetic (4)A ground state of mu(3)O is found from variable-temperature EPR to undergo a zero-field splitting (ZFS) of 2D = -5.0 cm(-1), which derives from the second-order anisotropic exchange. This allows evaluation of the sigma-to-pi excited-state exchange pathways and provides experimental evidence that the orbitally degenerate (2)E ground state of the antiferromagnetic mu(3)O would also undergo a ZFS by the first-order antisymmetric exchange that has the same physical origin as the anisotropic exchange. The important contribution of the mu(3)-oxo bridge to the ground-to-ground and ground-to-excited-state superexchange pathways that are responsible for the isotropic, antisymmetric, and anisotropic exchanges are discussed.  相似文献   

7.
Using a novel genetic selection, we have identified a series of mutants of the E. coli tyrosyl-tRNA synthetase that selectively charge an amber suppressor tRNA with p-(propargyloxy)phenylalanine and p-azidophenylalanine in yeast. These evolved tRNA-synthetase pairs can be used to site-specifically label proteins with functional groups orthogonal to normal biological chemistries. As an example, we have shown that proteins containing these amino acids can be efficiently bioconjugated with small organic molecules by a [3 + 2] cycloaddition reaction that is mild enough for the manipulation of biological samples.  相似文献   

8.
9.
ABSTRACT: BACKGROUND: The Gtr1protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. The Switch regions in Gtr1 mediate activation of the TORC1 complex [R. Gong, L. Li, Y. Liu, P. Wang, H. Yang, L. Wang, J. Cheng, K.L. Guan, Y. Xu, Genes Dev. 25 (2011) 1668-1673]. Therefore, knowledge about the biochemical activity is required to understand its mode of action and regulation. RESULTS: Here we employ tryptophan fluorescence analysis and radioactive GTPase assays to demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant. CONCLUSIONS: The extremely low intrinsic GTPase activity and distinct conformations upon nucleotide binding imply a strict regulation of Gtr1. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.  相似文献   

10.
The structure of the cell wall glucan isolated from the industrial strain of Saccharomyces cerevisiae was characterized as to be composed of a linear (1→3)-β-D-glucan chain with single β-D-glucopyranosyl residues attached to every ninth backbone unit by (1→6)-glycosidic linkages. Mild oxidation of this β-D-glucan with a dimethyl sulfoxide—acetic anhydride reagent yielded an “oxidized” glucan with aldehyde groups introduced at C-6 and carbonyl oxygens located at C-2 and C-4 of the glucopyranosyl rings. The conversion of the oxidized glucan into the polyoxime was used to study the progress of oxidation and to establish the carbonyl groups distribution in this new reactive polysaccharide derived from baker’s yeast cell wall.  相似文献   

11.
12.
Calculations of electronic structure, force constants and anharmonicity constants of the C-O valence vibration for a number of fluorinated ketones and ethers have been performed by the CNDO/SW and CNDO/2 methods. The change of association constants for these molecules with phenol is qualitatively explained. Anomalies in the IR spectra are studied, the role of direct fluorine - oxygen interactions is considered. The inductive constants for H(CF2)2, and C1(CF2)2, are calculated.  相似文献   

13.
Acid hydrolysis of purified DNA extracted from cells of a haploid repair-proficient (RAD) yeast strain that had been treated with 8-MOP + UVA revealed the existence of two major and one minor thymine photoproduct. At survival levels of the RAD strain between 100% and 1% furanside monoadducts constituted the major DNA lesion, followed by diadducts that, at the lowest survival level, nearly reached 50% of the thymine photoproducts; pyrone-side monoadducts were only detectable at the highest UVA exposure dose applied and clearly constitute a minority photoproduct. The number of induced diadducts was verified by determination of interstrand cross-links via denaturation and renaturation of 8-MOP + UVA-treated DNA from RAD and rad2 yeast strain. 8-MOP + UVA was shown to induce two types of locus-specific mutations: reversion of the lys1-1 ochre allele was between 20- to 50-fold higher than that of the his4-38 frameshift allele. Mutant yield for the lys 1-1 reversion was the same in RAD and excision repair-deficient rad2-20 strains whereas frameshift mutagenesis was about eightfold higher in the rad2-20 background.  相似文献   

14.
The four-electron reduction of dioxygen to water in multicopper oxidases takes place in a trinuclear copper cluster, which is linked to a mononuclear blue copper site, where the substrates are oxidized. Recently, several intermediates in the catalytic cycle have been spectroscopically characterized, and two possible structural models have been suggested for both the peroxy and native intermediates. In this study, these spectroscopic results are complemented by hybrid quantum and molecular mechanical (QM/MM) calculations, taking advantage of recently available crystal structures with a full complement of copper ions. Thereby, we obtain optimized molecular structures for all of the experimentally studied intermediates involved in the reductive cleavage of the O(2) molecule and energy profiles for individual reaction steps. This allows identification of the experimentally observed intermediates and further insight into the reaction mechanism that is probably relevant for the whole class of multicopper oxidases. We suggest that the peroxy intermediate contains an O(2)(2-) ion, in which one oxygen atom bridges the type 2 copper ion and one of the type 3 copper ions, whereas the other one coordinates to the other type 3 copper ion. One-electron reduction of this intermediate triggers the cleavage of the O-O bond, which involves the uptake of a proton. The product of this cleavage is the observed native intermediate, which we suggest to contain a O(2-) ion coordinated to all three of the copper ions in the center of the cluster.  相似文献   

15.
16.
17.
The kinetic study of the aqueous reaction, between pH 10 and 14, of eight N-(hydroxymethyl)benzamide derivatives in water at 25 degrees C, I = 1.0 M (KCl), has been performed. In all cases, the reaction proceeds via a specific-base-catalyzed deprotonation of the hydroxyl group followed by rate-limiting breakdown of the alkoxide to form aldehyde and amidate (E1cB-like). Such a mechanism was supported by the lack of general buffer catalysis and the first-order dependence of the rate of reaction at low hydroxide concentrations and the transition to zero-order dependence on hydroxide at high concentration. A rho-value of 0.67 was found for the Hammett correlation between the maximum rate for the hydroxide independent breakdown of the deprotonated carbinolamide (k1) and the substituent on the aromatic ring of the title compounds. Conversely, the substituents on the aromatic ring of the amide portion of the carbinolamide had only a small effect on the Ka of the hydroxyl group indicating that the amide group does not strongly transmit the electronic information of the substituents. These observations led to the conclusion that the major effect of electronic changes on the amide of carbinolamides is reflected in the nucleofugality of the amidate once the alkoxide is formed and not in the pKa of the hydroxyl group of the carbinolamide.  相似文献   

18.
It is postulated that the copper(I) nitrite complex is a key reaction intermediate of copper containing nitrite reductases (Cu-NiRs), which catalyze the reduction of nitrite to nitric oxide (NO) gas in bacterial denitrification. To investigate the structure-function relationship of Cu-NiR, we prepared five new copper(I) nitrite complexes with sterically hindered tris(4-imidazolyl)carbinols [Et-TIC = tris(1-methyl-2-ethyl-4-imidazolyl)carbinol and iPr-TIC = tris(1-methyl-2-isopropyl-4-imidazolyl)carbinol] or tris(1-pyrazolyl)methanes [Me-TPM = tris(3,5-dimethyl-1-pyrazolyl)methane; Et-TPM = tris(3,5-diethyl-1-pyrazolyl)methane; and iPr-TPM = tris(3,5-diisopropyl-1-pyrazolyl)methane]. The X-ray crystal structures of all of these copper(I) nitrite complexes were mononuclear eta(1)-N-bound nitrite complexes with a distorted tetrahedral geometry. The electronic structures of the complexes were investigated by absorption, magnetic circular dichroism (MCD), NMR, and vibrational spectroscopy. All of these complexes are good functional models of Cu-NiR that form NO and copper(II) acetate complexes well from reactions with acetic acid under anaerobic conditions. A comparison of the reactivity of these complexes, including previously reported (iPr-TACN)Cu(NO2) [iPr-TACN = 1,4,7-triisopropyl-1,4,7-triazacyclononane], clearly shows the drastic effects of the tridentate ligand on Cu-NiR activity. The copper(I) nitrite complex with the Et-TIC ligand, which is similar to the highly conserved three-histidine ((His)3) ligand environment in the catalytic site of Cu-NiR, had the highest Cu-NiR activity. This result suggests that the (His)3 ligand environment is essential for acceleration of the Cu-NiR reaction. The highest Cu-NiR activity for the Et-TIC complex can be explained by the structural and spectroscopic characterizations and the molecular orbital calculations presented in this paper. Based on these results, the functional role of the (His)3 ligand environment in Cu-NiR is discussed.  相似文献   

19.
20.
Polysaccharides were extracted from natural sources with various biological activities, which are strongly influenced by their chemical structure and molecular weight. In this research, mannans polysaccharides were obtained from Saccharomyces cerevisiae by ethanol precipitation. The molecular weight of YM50, YM70, and YM90 mannans was 172.90 kDa, 87.09 kDa, and 54.05 kDa, respectively. Scanning electron microscopy of YM 90 mannans showed a rough surface with numerous cavities, while the surfaces of YM50 and YM70 were relatively smooth. Sepharose CL-6B and FTIR indicated that mannans had the characteristic bands of polysaccharides. The antioxidant activities of polysaccharides were evaluated in vitro using various assays. Mannans showed a good scavenging activity of DPPH radicals which depend on the molecular weight and concentration, and a higher scavenging activity of hydroxyl radical than ferric-reducing power activities. For the three types of mannans, cytotoxicity and hemolytic activity were rarely detected in mice erythrocytes and Caco-2 cells. Those results could contribute to the further application of mannans from Saccharomyces cerevisiae in the food and medicine industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号