首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the distribution of goods from a central depot to geographically dispersed customers happens quite frequently that some customers, called linehauls, receive goods from that depot while others, named backhauls, send goods to it. This situation is described and studied by the vehicle routing problem with backhauls. In this paper we present a new tabu search algorithm that starting from pseudo-lower bounds was able to match almost all the best published solutions and to find many new best solutions, for a large set of benchmark problems.  相似文献   

2.
In this article, a visual interactive approach based on a new greedy randomised adaptive memory programming search (GRAMPS) algorithm is proposed to solve the heterogeneous fixed fleet vehicle routing problem (HFFVRP) and a new extension of the HFFVRP, which is called heterogeneous fixed fleet vehicle routing problem with backhauls (HFFVRPB). This problem involves two different sets of customers. Backhaul customers are pickup points and linehaul customers are delivery points that are to be serviced from a single depot by a heterogeneous fixed fleet of vehicles, each of which is restricted in the capacity it can carry, with different variable travelling costs.  相似文献   

3.
This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot where there are two types of demands, pickup demand and delivery demand. Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or delivery.Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for the problem.  相似文献   

4.
The vehicle routing problem with backhauls involves the delivery and pickup of goods at different customer locations. In many practical situations, however, the same customer may require both a delivery of goods from the distribution centre and a pickup of recycled items simultaneously. In this paper, an insertion-based procedure to generate good initial solutions and a heuristic based on the record-to-record travel, tabu lists, and route improvement procedures are proposed to resolve the vehicle routing problems with simultaneous deliveries and pickups. Computational characteristics of the insertion-based procedure and the hybrid heuristic are evaluated through computational experiments. Computational results show that the insertion-based procedure obtained better solutions than those found in the literature. Computational experiments also show that the proposed hybrid heuristic is able to reduce the gap between initial solutions and optimal solutions effectively and is capable of obtaining optimal solutions very efficiently for small-sized problems.  相似文献   

5.
The capacitated vehicle routing problem (CVRP) considered in this paper occurs when goods must be delivered from a central depot to clients with known demands, usingk vehicles of fixed capacity. Each client must be assigned to exactly one of the vehicles. The set of clients assigned to each vehicle must satisfy the capacity constraint. The goal is to minimize the total distance traveled. When the capacity of the vehicles is large enough, this problem reduces to the famous traveling salesman problem (TSP). A variant of the problem in which each client is visited by at least one vehicle, called the graphical vehicle routing problem (GVRP), is also considered in this paper and used as a relaxation of CVRP. Our approach for CVRP and GVRP is to extend the polyhedral results known for TSP. For example, the subtour elimination constraints can be generalized to facets of both CVRP and GVRP. Interesting classes of facets arise as a generalization of the comb inequalities, depending on whether the depot is in a handle, a tooth, both or neither. We report on the optimal solution of two problem instances by a cutting plane algorithm that only uses inequalities from the above classes.This work was supported in part by NSF grant DDM-8901495.  相似文献   

6.
In the Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW) customers either receive goods from the depot or send goods to the depot and pickup or delivery at a customer has to occur within a pre-specified time window. The main objective is to minimize the total required fleet size for serving all customers. Secondary objectives are to minimize the total distance travelled or to minimize the total route duration of all vehicles. In this paper we consider a variant of the mixed VRPBTW where backhauls may be served before linehauls on any given route. Besides the modelling aspect of this variant we will study its performance implications when compared to the standard VRPBTW using a heuristic algorithm based on Ant Colony Optimization.  相似文献   

7.
This paper presents a method for solving multi-depot vehicle routing problem (MDVRP). First, a virtual central depot is added to transfer MDVRP to the multi-depot vehicle routing problem with the virtual central depot (V-MDVRP), which is similar to a vehicle routing problem (VRP) with the virtual central depot as the origin. An improved ant colony optimization with coarse-grain parallel strategy, ant-weight strategy and mutation operation, is presented for the V-MDVRP. The computational results for 23 benchmark problems are reported and compared to those of other ant colony optimizations.  相似文献   

8.
Most of the research on integrated inventory and routing problems ignores the case when products are perishable. However, considering the integrated problem with perishable goods is crucial since any discrepancy between the routing and inventory cost can double down the risk of higher obsolescence costs due to the limited shelf-life of the products. In this paper, we consider a distribution problem involving a depot, a set of customers and a homogeneous fleet of capacitated vehicles. Perishable goods are transported from the depot to customers in such a way that out-of-stock situations never occur. The objective is to simultaneously determine the inventory and routing decisions over a given time horizon such that total transportation cost is minimized. We present a new “arc-based formulation” for the problem which is deemed more suitable for our new tabu search based approach for solving the problem. We perform a thorough sensitivity analysis for each of the tabu search parameters individually and use the obtained gaps to fine-tune the parameter values that are used in solving larger sized instances of the problem. We solve different sizes of randomly generated instances and compare the results obtained using the tabu search algorithm to those obtained by solving the problem using CPLEX and a recently published column generation algorithm. Our computational experiments demonstrate that the tabu search algorithm is capable of obtaining a near-optimal solution in less computational time than the time required to solve the problem to optimality using CPLEX, and outperforms the column generation algorithm for solving the “path flow formulation” of the problem in terms of solution quality in almost all of the considered instances.  相似文献   

9.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

10.
选址-路径问题(location routing problems, LRP)是集成物流网络研究中的难题,也是任何一个大型物流配送企业必须面对的管理决策问题。本文在仓库容量约束和车辆容量约束的基础上,结合送取货一体化的配送模式和客户服务时间要求,建立了带退货和软时间窗的多仓库选址-路径(MDLRP)数学模型。针对MDLRP问题求解的复杂性,引入局部搜索算法和重组策略,设计了自适应混合遗传算法,对模型进行整体求解。最后进行数值实验,表明本文提出的模型和改进算法具有实用性和优越性,可为选址和车辆运输决策提供重要参考依据。  相似文献   

11.
In this paper we study the routing of a single vehicle that delivers products and picks up items with stochastic demand. The vehicle follows a predefined customer sequence and is allowed to return to the depot for loading/unloading as needed. A suitable dynamic programming algorithm is proposed to determine the minimum expected routing cost. Furthermore, the optimal routing policy to be followed by the vehicle’s driver is derived by proposing an appropriate theorem. The efficiency of the algorithm is studied by solving large problem sets.  相似文献   

12.
本文研究了具有总时间和车容量约束的双需求集货送货一体化车辆路径问题,在综合考虑运输费用和车辆出行固定费用的前提下,建立了该问题的整数线性规划模型,并分别给出了求解该模型的精确算法和基于节约准则的启发式算法。最后通过一个具体实例验证了算法的有效性。  相似文献   

13.
The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought back to the depot from the backhaul customers. Numerous ways of modeling the backhaul constraints have been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A survey of these models is presented, and a unified model is developed that is capable of handling most variants of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with Time Windows, which can be solved through an improved version of the large neighborhood search heuristic proposed by Ropke and Pisinger [An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, Technical Report, DIKU, University of Copenhagen, 2004]. The results obtained in this way are comparable to or improve on similar results found by state of the art heuristics for the various variants of the problem. The heuristic has been tested on 338 problems from the literature and it has improved the best known solution for 227 of these. An additional benefit of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle Routing Problem with Backhauls for the individual customers or vehicles.  相似文献   

14.
In many applications of the vehicle routing problem with time windows (VRPTW), goods must be picked up within desired time frames. In addition, they have some limitations on their arrival time to the central depot. In this paper, we present a new version of VRPTW that minimizes the total cycle time of the goods. In order to meet the time windows and also minimize the cycle time, the courier’s schedule is allowed to vary. An algorithm, named VeRSA, is proposed to solve this problem. VeRSA employs concepts of scheduling theorems and algorithms to determine feasible routes and schedules of the available couriers. We prove a theoretical lower bound that provides a useful bound on the optimality gap. We also conduct a set of numerical experiments. VeRSA obtains a feasible solution faster than solving the MIP. The optimality gap using our proposed lower bound is smaller than the gap found with the standard LP relaxation.  相似文献   

15.
针对单储位储存方式可能导致仓库存取通道拥挤和作业效率低的情形,提出了一种基于多候选储位的存取路径优化方法。首先分配了货物的存取储位,然后建立了多候选储位的车辆路径问题(MLVRP)模型,并基于储位优先解码原则设计了遗传算法,最后通过算例证明该方法的有效性和算法的高效性。多候选储位的方法可以为取货任务至少节约18.4%(两个候选储位)和21.8%(三个候选储位)的路程,算法迭代10000次只需要434s。  相似文献   

16.
Recently, an increasing number of papers on vehicle routing problems with backhauling has been published. Different types of backhauling problems are discussed. Two of them—the vehicle routing problem with backhauls and so-called ‘mixed loads’ (VRPBM) and the vehicle routing problem with simultaneous delivery and pick-up (VRPSDP)—are closely related. In this paper, we discuss that relationship. Our findings are that previously published results for VRPSDP instances obtained by using a heuristic suggested for the VRPBM do not take into account specific properties of the VRPSDP. As a result of the analysis of the relation between both problem types the possibility of solving the VRPBM by applying an insertion heuristic based on the concept of ‘residual capacities’ originally designed for the VRPSDP is investigated. Numerical results indicate that, for certain instances, this approach is more favourable than the application of a heuristic suggested for the VRPBM in the literature.  相似文献   

17.
Just-in-time (JIT) trucking service, i.e., arriving at customers within specified time windows, has become the norm for freight carriers in all stages of supply chains. In this paper, a JIT pickup/delivery problem is formulated as a stochastic dynamic traveling salesman problem with time windows (SDTSPTW). At a customer location, the vehicle either picks up goods for or delivers goods from the depot, but does not provide moving service to transfer goods from one location to another. Such routing problems are NP-hard in deterministic settings, and in our context, complicated further by the stochastic, dynamic nature of the problem. This paper develops an efficient heuristic for the SDTSPTW with hard time windows. The heuristic is shown to be useful both in controlled numerical experiments and in applying to a real-life trucking problem.  相似文献   

18.
With the popularity of the just-in-time system, more and more companies are operating with little or no inventories, which make them highly vulnerable to delays on supply. This paper discusses a situation when the supply of the commodity does not arrive at the depot on time, so that not enough of the commodity is available to be loaded on all vehicles at the start of the delivery period. New routing plans need to be developed in such a case to reduce the impact the delay of supply may have on the distribution company. The resulting vehicle routing problem is different from other types of vehicle routing problems as it involves waiting and multiple trips. Two approaches have been developed to solve the order release delay problem, both of which involve a Tabu Search algorithm. Computational results show the proposed approaches can largely reduce the disruption costs that are caused by the delayed supply and they are especially effective when the length of delay is long.  相似文献   

19.
This paper describes an exact algorithm for solving a problem where the same vehicle performs several routes to serve a set of customers with time windows. The motivation comes from the home delivery of perishable goods, where vehicle routes are short and must be combined to form a working day. A method based on an elementary shortest path algorithm with resource constraints is proposed to solve this problem. The method is divided into two phases: in the first phase, all non-dominated feasible routes are generated; in the second phase, some routes are selected and sequenced to form the vehicle workday. Computational results are reported on Euclidean problems derived from benchmark instances of the classical vehicle routing problem with time windows.  相似文献   

20.
Vehicle routing variants with multiple depots and mixed fleet present intricate combinatorial aspects related to sequencing choices, vehicle type choices, depot choices, and depots positioning. This paper introduces a dynamic programming methodology for efficiently evaluating compound neighborhoods combining sequence-based moves with an optimal choice of vehicle and depot, and an optimal determination of the first customer to be visited in the route, called rotation. The assignment choices, making the richness of the problem, are thus no more addressed in the solution structure, but implicitly determined during each move evaluation. Two meta-heuristics relying on these concepts, an iterated local search and a hybrid genetic algorithm, are presented. Extensive computational experiments demonstrate the remarkable performance of these methods on classic benchmark instances for multi-depot vehicle routing problems with and without fleet mix, as well as the notable contribution of the implicit depot choice and positioning methods to the search performance. New state-of-the-art results are obtained for multi-depot vehicle routing problems (MDVRP), and multi-depot vehicle fleet mix problems (MDVFMP) with unconstrained fleet size. The proposed concepts are fairly general, and widely applicable to many other vehicle routing variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号