首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
气体介质在润滑间隙流动过程中,沿气体流动方向开设的表面矩形深槽结构内部产生旋涡阻碍气体流动,形成节流效应.通过矩形深沟槽表面静压润滑实验,开展深槽表面和光滑表面的流量特性对比测试,研究了低Reynolds数层流状态下深槽表面间隙的气体节流效应.结果表明:深槽表面产生显著的节流效应,并且随Reynolds数增加而增强;在低Reynolds数层流状态下,深槽表面可以产生节流效应,但是节流效应强度不稳定,当处于完全湍流状态时,节流效应维持定值;间隙尺寸、槽深等结构参数对节流效应影响明显.  相似文献   

2.
超疏水沟槽表面通气减阻实验研究   总被引:7,自引:5,他引:2  
减阻是解决航行体提速和增程的主要技术途径之一, 对缓解日益严峻的能源危机极为重要. 在重力式管道实验系统中, 测试给出了湍流状态下不同通气速率时减阻率随雷诺数及沟槽无量纲间距的变化规律和气膜铺展状态, 对比分析了单纯超疏水表面与超疏水沟槽表面上通气时减阻效果的差异.实验板材质为无色亚克力, 沟槽结构采用机械方法加工, 并在表面喷涂超疏水涂层. 结果表明, 持续通气能解决超疏水沟槽表面气膜层流失问题, 实现气膜层长时间稳定维持; 恒定雷诺数下, 随通气速率增大, 超疏水沟槽表面气膜铺展更趋均匀, 减阻率上升; 由于通气速率影响气膜横向扩展能力, 致使恒定通气速率下, 减阻率随雷诺数的变化呈现两种模式; 在固定雷诺数及通气速率时, 减阻率随沟槽尺寸的扩大先增后减, $S^{+}\approx 76$时减阻率最大. 分析其原因在于, 沟槽结构增大沾湿面积的同时, 显著提升了通气状态下超疏水表面气膜层的稳定性, 因而展示出与超疏水表面和沟槽表面均不相同的减阻规律, 且效果更佳.   相似文献   

3.
减阻是解决航行体提速和增程的主要技术途径之一,对缓解日益严峻的能源危机极为重要.在重力式管道实验系统中,测试给出了湍流状态下不同通气速率时减阻率随雷诺数及沟槽无量纲间距的变化规律和气膜铺展状态,对比分析了单纯超疏水表面与超疏水沟槽表面上通气时减阻效果的差异.实验板材质为无色亚克力,沟槽结构采用机械方法加工,并在表面喷涂超疏水涂层.结果表明,持续通气能解决超疏水沟槽表面气膜层流失问题,实现气膜层长时间稳定维持;恒定雷诺数下,随通气速率增大,超疏水沟槽表面气膜铺展更趋均匀,减阻率上升;由于通气速率影响气膜横向扩展能力,致使恒定通气速率下,减阻率随雷诺数的变化呈现两种模式;在固定雷诺数及通气速率时,减阻率随沟槽尺寸的扩大先增后减, S~+≈76时减阻率最大.分析其原因在于,沟槽结构增大沾湿面积的同时,显著提升了通气状态下超疏水表面气膜层的稳定性,因而展示出与超疏水表面和沟槽表面均不相同的减阻规律,且效果更佳.  相似文献   

4.
本文从扁壳的挠度和内力函数混合方程出发,得到了双曲扭壳的重三角级数表示的解析结果.分析了扭率对该扭壳的刚性影响,提出关于扭率判别条件上界和下界的概念:当扭壳扭率小于判别值的下界时,扭壳可视为矩形平板;当扭率大于判别值的上界时,则可忽略扭壳的平板效应,视其为无矩状态.对于这两种情况计算误差控制在百分之一以内.  相似文献   

5.
采用应力场和温度场耦合的有限元方法,计算磁头/磁盘滑动接触下铝基磁盘磁层内瞬态温度场和应力场及退磁临界条件,分析接触压力、滑动速度、摩擦系数以及磁盘表面纹理对磁层内最大摩擦温升值和最大应力值的影响.结果表明:波形纹理表面瞬间滑动接触所产生的温度分布呈波形特征,表面纹理越尖锐,磁层内的温度和应力越大;滑动速度对磁层内温度的影响大于对应力的影响;当磁层最大应力小于1.2 GPa时,所对应的速度和压力为安全工况;当温升大于180 K时所对应的工况将导致磁盘退磁.  相似文献   

6.
液滴振荡行为是液滴运动中的重要伴随现象,具有重要科研价值.由于液滴撞击疏水沟槽板时运动行为与光滑表面明显不同,可以推测疏水沟槽表面液滴振荡特性也将会呈现与众不同的行为特点.采用高速摄像技术,研究了矩形疏水沟槽表面上水滴高度和接触线振荡行为随沟槽尺寸和撞击速度的变化规律.结果发现,矩形疏水沟槽造成的各向润湿异性使得振荡过程中水滴在平行沟槽方向上的接触线长度大于垂直方向,但并不影响水滴高度方向上衰减振荡的周期,即水滴振荡周期与沟槽间距无关;同时由于疏水沟槽表面上存在能垒束缚效应,致使水滴振荡过程中接触线的铺展和回缩运动不服从典型阻尼振荡规律,而呈现振荡数次后直接趋稳的特点.如水滴以0.61 m/s撞击时,接触线经历2次振荡后即维持稳定,但此时水滴仍在持续振荡中.另外,还初步分析了水滴振荡周期与沟槽间距无关的原因.  相似文献   

7.
液滴振荡行为是液滴运动中的重要伴随现象,具有重要科研价值.由于液滴撞击疏水沟槽板时运动行为与光滑表面明显不同,可以推测疏水沟槽表面液滴振荡特性也将会呈现与众不同的行为特点.采用高速摄像技术,研究了矩形疏水沟槽表面上水滴高度和接触线振荡行为随沟槽尺寸和撞击速度的变化规律.结果发现,矩形疏水沟槽造成的各向润湿异性使得振荡过程中水滴在平行沟槽方向上的接触线长度大于垂直方向,但并不影响水滴高度方向上衰减振荡的周期,即水滴振荡周期与沟槽间距无关;同时由于疏水沟槽表面上存在能垒束缚效应,致使水滴振荡过程中接触线的铺展和回缩运动不服从典型阻尼振荡规律,而呈现振荡数次后直接趋稳的特点.如水滴以0.61 m/s撞击时,接触线经历2次振荡后即维持稳定,但此时水滴仍在持续振荡中.另外,还初步分析了水滴振荡周期与沟槽间距无关的原因.  相似文献   

8.
采用Realized k-ε湍流模型求解Reynolds平均Navier-Stokes方程,对SUBOFF全附体模型在低雷诺数和高雷诺数条件下的三维粘性流场分别进行了数值模拟,研究了桨-舵间距以及雷诺数对螺旋桨盘面伴流场的影响.计算结果表明:适当的加大桨-舵间距对提高潜艇尾流场的均匀性有显著的效果;桨-舵间距对潜艇桨盘面伴流场均匀性的影响在潜艇的低雷诺数状态和高雷诺数状态具有同样的规律.  相似文献   

9.
点接触润滑粗糙表面滑动摩擦力的预测研究   总被引:6,自引:5,他引:1  
在整个润滑区域内基于统一Reynolds方程的混合润滑模型,根据流变模型计算流体摩擦力,根据边界膜极限剪应力模型计算微突体接触摩擦力,二者相加得到混合润滑摩擦力.分析了粗糙度幅值和纹理对摩擦系数的影响以及非牛顿流变模型对流体摩擦系数的影响.模拟跨越整个润滑区,即弹流润滑、混合润滑和边界润滑,得到完整的Stribeck曲线.结果表明,表面越粗糙,混合润滑的摩擦系数越大,弹流润滑和边界润滑时粗糙度幅值影响很小.交叉斜纹的润滑效果优于横向纹理.不同极限剪应力流变模型计算的摩擦系数相差不大.  相似文献   

10.
低雷诺数沟槽表面湍流/非湍流界面特性的实验研究   总被引:1,自引:0,他引:1  
李思成  吴迪  崔光耀  王晋军 《力学学报》2020,52(6):1632-1644
湍流/非湍流界面是流动中湍流和无旋流的边界,其相关研究在加深对湍流与无旋流之间的物质、动量和能量交换的理解有重要意义.本文采用时间解析的二维粒子图像测速技术,分别对零压梯度光滑、顺流向锯齿形沟槽表面平板在不同雷诺数下对湍流/非湍流界面的几何特征及动力学特性进行了实验研究.实验雷诺数为$Re_{\tau } =400\sim1000$.本文采用了湍动能准则对湍流/非湍流界面进行了识别,并分析界面高度分布、分形特征及界面附近的条件平均速度和涡量.结果表明在不同雷诺数下, 无论是光滑壁面还是沟槽壁面,界面平均高度在0.8 $\sim$ 0.9$\delta_{99} $附近. 对于沟槽壁面而言,减阻时对应的界面高度的概率密度分布与光滑壁面基本一致, 均遵循正态分布,而当阻力增大时, 界面高度分布偏离正态分布出现正的偏度. 在本实验情况下,界面分形维度、跨界面速度跳变均会随着雷诺数增大而增大. 此外,不同壁面情况下无量纲条件平均涡量在界面附近的分布相近,而界面附近无量纲速度梯度最大值近似为常数.   相似文献   

11.
This paper presents results of experiments conducted to investigate the effects of Reynolds number and upstream wall roughness on the turbulence structure in the recirculation and recovery regions of a smooth forward facing step. A reference smooth upstream wall and a rough upstream wall made from sand gains were studied. For the smooth upstream wall, experiments were conducted at Reynolds number based on the freestream velocity and step height (h), Reh = 4940, 8400 and 8650. The rough wall experiments was performed at Reh = 5100, 8200 and 8600 to closely match the corresponding Reh experiment over the smooth wall. The reattachment lengths in the smooth wall experiments were Lr/h ≈ 2.2, but upstream roughness significantly reduced these values to Lr/h ≈ 1.3. The integral scales within the recirculation bubbles were independent of upstream roughness and Reynolds number; however, upstream roughness significantly increased the spatial coherence and integral scales outside the recirculation bubbles and in the recovery region. Irrespective of the upstream wall condition, the redeveloping boundary layer recovered at 25h from reattachment.  相似文献   

12.
Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan–Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular.For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is greater than that in the cross-flow direction. They are 14 and 26 for KC=10 and 20, respectively. Maximum amplitude occurs at the boundary value of the reduced velocity between in-phase regime and anti-phase regime in both the x- and the y-directions.  相似文献   

13.
The lock-on characteristics, the detailed interactions and downstream evolutions of the wakes behind side-by-side cylinders of unequal diameter (D/d?=?2), spaced by a gap ratio 0.75 (G/D?=?0.75), are investigated at Reynolds number 600 by the dye flow visualization, laser Doppler anemometry (LDA) and particle image velocimeter (PIV) velocity measurements. The lock-on frequency bands are studied by LDA and PIV at Reynolds number 2,000. The D, d and G are the diameters of the large, the small cylinders and the net gap between two cylinders, respectively. Periodic excitations, in form of rotary oscillation about the cylinder center, are applied to the large cylinder with the same amplitude. It is found that while the large cylinder is excited, two lock-on frequency bands of the wake behind the large cylinder are detected. These two lock-on frequency bands correspond to the primary and the one-third sub-harmonic lock-on of the wake behind large cylinder, respectively. These two lock-on frequency bands distribute symmetrically about the fundamental and the third superharmonic of the natural shedding frequency behind a single cylinder at the same Reynolds number. The left-shifted frequency band (1.8?≤?f e /f os ?≤?2.0) is not considered as a locked-on frequency band because the phase difference between two excitation frequencies across f e /f os ?=?2.0 vary significantly. While the wake behind the large cylinder is locked-on at f e /3 (or f os ), the gap flow becomes unbiased and the frequency of the wake behind small cylinder remains around the natural shedding frequency. Thus, the frequency band of 3.0?≤?f e /f os ?≤?3.22 is also not locked-on because the phase difference in the narrow wake excited at f e /f os ?=?2.93 and 3.07 changes significantly. Note f e and f os denote the excitation frequency and the natural shedding frequency behind a single large cylinder, respectively.  相似文献   

14.
The triangular jet was investigated for use as a passive device to enhance fine-scale mixing and to reduce the coherence of large-scale structures in the flow. The suppression of the structures is vital to the enhancement of molecular mixing, which is important for efficient chemical reactions including combustion. The sharp corners in the jet injector introduced high instability modes into the flow via the non-symmetric mean velocity and pressure distribution around the nozzle. Both aerodynamic and hydrodynamic flows showed the difference between the flow at the corner (vertex) and at the flat side. While highly coherent structures could be generated at the flat side, the corner flow was dominated by highly turbulent small-scale eddies. The flow characteristics were tested using hotwire anemometry for mean flow and turbulence analysis, and flow visualization in air and water.List of symbols D inlet duct diameter - D e equivalent diameter - D i inside diameter - E v velocity fluctuation energy - f F forcing frequency - f j preferred mode frequency - L length - Re Reynolds number - R e equivalent radius (same area) - r 0.5 jet half-width - R 1.2 cross-correlation factor - r radial coordinate (circular duct) - St e most energetic Strouhal number - St j preferred mode Strouhal number - U m centerline (maximum) velocity in radial u-profile - U 0 jet exit velocity - u local axial mean velocity - x axial coordinate - X 1 axial position of first of two hot-wires for axial cross-correlation - + y F lateral coordinate at flat side of triangular duct - - y V lateral coordinate at vertex side of triangular duct - (E V)j preferred mode energy - X axial distance between hot-wires - r radial distance between two hot-wires (circular jet) - y lateral distance between two hot-wires (triangular jet) - P/P pressure amplitude - momentum thickness - time  相似文献   

15.
Small elements of circular, square, triangular and thin-strip cross-sections are used to suppress vortex shedding from a rectangular cylinder of stream-wise to transverse scale ratio L/B=3.0 at Reynolds numbers in the range of Re=VB/ν=75–130, where V is the on-coming velocity of the stream, and ν is the kinematic viscosity. The relative transverse dimension of the small element b/B is fixed at 0.2. The results of numerical simulation and visualization experiment show that, vortex shedding from both sides of the cylinder can be suppressed and the fluctuating drag and lift of the cylinder can be greatly reduced, if the element is placed in a certain region referred to as the effective zone. Comparisons at a specific Reynolds number indicate that the square element produces the largest size of the effective zone, whereas the triangular element yields the smallest. Results also show that the effective zone for the square element shrinks with increasing Re and disappears at Re>130. Independent of element cross-section shape and Reynolds number, the center of the effective zone is always at X/B=2.5–3.0 and Y/B≈1.0. The mechanism of the suppression is discussed from the view points of velocity profile stability and stress distribution.  相似文献   

16.
Miniature axisymmetric supersonic nozzles were produced with exit Mach numbers ranging from 1.0 to 2.8 by forming Pyrex® capillary tubing of 0.6 and 1.2 mm inside diameter into converging-diverging channels. The nozzle contours were measured and were found to compare favorably to ideal solutions given by the axisymmetric method of characteristics. In addition, the surfaces of these nozzles were quite smooth, providing featureless flows at perfect expansion. Schlieren visualization and pitot pressure measurements of the resulting microjets were compared to the literature available for jets produced by larger-scale nozzles. A postponed transition to turbulence is noted in these microjets due to their low Reynolds number. The pitot pressure on centerline is nearly uniform at perfect expansion over core lengths up to 12 nozzle exit diameters. Supersonic microjet nozzles thus provide a more effective small-scale high-pressure gas delivery device than do sonic nozzles of comparable scale at equivalent mass flow rates. Supersonic microjets may therefore have several industrial applications.List of symbols * boundary layer displacement thickness, mm - d diameter of nozzle exit, mm - L length of nozzle diverging section, mm - L c inviscid core length, mm - L s supersonic region length, mm - M c convective Mach number - M e exit Mach number - P b backpressure at nozzle exit, (equal to ambient pressure in this experiment) - P e exit pressure of the supersonic jet - P be exit pressure ratio (P b /P e ) - P p impingement pressure (pitot pressure) - P 0 stagnation pressure supplied to nozzle - P n overall pressure ratio (P 0/P b ,) - r radial dimension (cylindrical coordinate system), mm - r 0 radius of throat, mm - Re d Reynolds number, based on nozzle exit diameter - V e exit velocity, m/s - x axial dimension (cylindrical coordinate system), mm This research was sponsored by National Science Foundation Grant DMI 9400119, as part of a study of the assist-gas dynamics of laser cutting.  相似文献   

17.
In this work, we present an experimental study of the wall confinement effect on the wake formation behind a circular cylinder of diameter dc=10 mm and of length Lc=30dc. The experiments were performed in a water tunnel with the dimensions (length=300dc, height=3dc, span Lc=30dc). The confinement rate was r=1/3 and the Reynolds number was in the range of 30–277. The experiments were done using 2-D PIV measurements. The first instability was delayed by the confinement and the von Kármán vortices characteristics are different from the unconfined case. Proper orthogonal decomposition (POD) of the flow was used for a filtering purpose and to extract the energetic contribution of the different modes. A low-order representation of the flow, constructed from the first pair of modes in the well-defined region of the flow, shows that von Kármán vortices are equivalent to vanishing progressive waves. Measurements done above the cylinder show the presence of 3-D span instabilities showing great similarities with “Mode A” and “Mode B” found in the unconfined case.  相似文献   

18.
The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number Ret. The statistics of head on quenching have been analysed in terms of the wall Peclet number Pe (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(Pe) for the turbulent Le=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both Pe and Φ in turbulent cases remain comparable to the corresponding laminar values for Le=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of Pe and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.  相似文献   

19.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

20.
The effect of increased free-stream turbulence on the reduction of the surface friction coefficient c f in a turbulent boundary layer behind large-eddy break-up (LEBU) devices is investigated using a gravimetric method. The turbulence level was ε ≈ 1.9–4.9 % and the turbulence scale L e ≈ 40–110 mm. The boundary layer Reynolds number Re** was varied from 2300 to 7500, with the boundary layer thickness being varied on the range δ = 33–44 mm. It is shown that an increase in the turbulence level ε has almost no impact on the relative reduction of friction behind LEBU-devices, whereas, under similar conditions of elevated free-stream turbulence, for another method, namely, the use of surface riblets, the friction reduction may be more strongly expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号