首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the phenomenon of persistent countergradient (PCG) fluxes of momentum and heat (density) as observed in homogeneous turbulence forced by shear and stratification. Countergradient fluxes may occur at large scales when stratification is strong. However, they always occur at small scales, independently of stratification. A conceptional model is introduced to explain PCG fluxes at small scales as the result of the collision of large-scale fluid parcels. The large parcels collide under the driving force of inclined vortex structures (in a shear-dominated flow) or of buoyancy (in a strongly stratified shear flow). This collision model also explains the PCG heat flux in an unsheared stratified flow with zero average momentum flux. It is found that the energy of the small-scale PCG motions is provided (i) by quick transport of kinetic energy from the scales of production to relatively slowly dissipating scales if the flow is shear-driven and (ii) by conversion of available potential energy to kinetic energy at small scales when the flow is stratified. The collision mechanism is an inherent property of the turbulence dynamics. Therefore, the PCG fluxes at small scales reflect a universal character of homogeneous turbulence, and are found over a large range of Reynolds numbers. The Prandtl (or Schmidt) number influences the rate of dissipation of temperature (or density) variance but not the dissipation rate of the velocity variance. In stratified flows, therefore, the number directly affects the strength of the PCG heat flux at small scales. It is found, however, that the PCG momentum flux is also altered slightly when the Prandtl number is large enough to sustain small buoyantly moving parcels after collision.  相似文献   

2.
We consider the effect of finite Prandtl–Darcy numbers of the onset of convection in a porous layer heated isothermally from below and which is subject to a horizontal pressure gradient. A dispersion relation is found which relates the critical Darcy–Rayleigh number and the induced phase speed of the cells to the wavenumber and the imposed Péclet and Prandtl–Darcy numbers. Exact numerical solutions are given and these are supplemented by asymptotic solutions for both large and small values of the governing nondimensional parameters. The classical value of the critical Darcy–Rayleigh number is $4\pi ^2$ 4 π 2 , and we show that this value increases whenever the Péclet number is nonzero and the Prandtl–Darcy number is finite simultaneously. The corresponding wavenumber is always less than $\pi $ π and the phase speed of the convection cells is always smaller than the background flux velocity.  相似文献   

3.
The analysis of natural convection for moderate and high Prandtl numbers in a fluid-saturated porous layer heated from below and subject to vibrations is presented with a twofold objective. First, it aims at investigating the significance of including a time derivative term in Darcy’s equation when wave phenomena are being considered. Second, it is dedicated to reporting results related to the route to chaos for moderate and high Prandtl number convection. The results present conclusive evidence indicating that the time derivative term in Darcy’s equation cannot be neglected when wave phenomena are being considered even when the coefficient to this term is extremely small. The results also show occasional chaotic “bursts” at specific values (or small range of values) of the scaled Rayleigh number, $R$ , exceeding some threshold. This behavior is quite distinct from the case without forced vibrations, when the chaotic solution occupies a wide range of $R$ values, interrupted only by periodic “bursts.” Periodic and chaotic solution alternate as the value of the scaled Rayleigh number varies.  相似文献   

4.
The nonlinear stability of the motionless state of a binary fluid mixture heated and salted from below, in the Oberbeck-Boussinesq scheme, for stress-free and rigid-rigid boundary conditions and Schmidt numbers PC greater than Prandtl numbers PT, is studied in the region around the bifurcation point of linear instability. An improvement of the results in Mulone [11] is found for small values of p = P C /P T and PT. For p sufficiently large the critical nonlinear Rayleigh number is very close to the linear one (with relative difference less than in the sea water case) Received December 12, 2002 / Published online April 23, 2003 RID="a" ID="a" e-mail: mbasurto@dmi.unict.it RID="b" ID="b" e-mail: lombardo@dmi.unict.it ID="Communicated by Brian Straugham, Durham"  相似文献   

5.
Magnetohydrodynamic (MHD) flow of a viscous electrically conducting incompressible fluid between two stationary impermeable disks is considered. A homogeneous electric current density vector normal to the surface is specified on the upper disk, and the lower disk is nonconducting. The exact von Karman solution of the complete system of MHD equations is studied in which the axial velocity and the magnetic field depend only on the axial coordinate. The problem contains two dimensionless parameters: the electric current density on the upper plate Y and the Batchelor number (magnetic Prandtl number). It is assumed that there is no external source that produces an axial magnetic field. The problem is solved for a Batchelor number of 0–2. Fluid flow is caused by the electric current. It is shown that for small values of Y, the fluid velocity vector has only axial and radial components. The velocity of motion increases with increasing Y, and at a critical value of Y, there is a bifurcation of the new steady flow regime with fluid rotation, while the flow without rotation becomes unstable. A feature of the obtained new exact solution is the absence of an axial magnetic field necessary for the occurrence of an azimuthal component of the ponderomotive force, as is the case in the MHD dynamo. A new mechanism for the bifurcation of rotation in MHD flow is found.  相似文献   

6.
In this paper, we give an instability criterion for the Prandtl equations in three-dimensional space, which shows that the monotonicity condition on tangential velocity fields is not sufficient for the well-posedness of the three-dimensional Prandtl equations, in contrast to the classical well-posedness theory of the two-dimensional Prandtl equations under the Oleinik monotonicity assumption. Both linear stability and nonlinear stability are considered. This criterion shows that the monotonic shear flow is linearly stable for the three-dimensional Prandtl equations if and only if the tangential velocity field direction is invariant with respect to the normal variable, and this result is an exact complement to our recent work (A well-posedness theory for the Prandtl equations in three space variables. arXiv:1405.5308, 2014) on the well-posedness theory for the three-dimensional Prandtl equations with a special structure.  相似文献   

7.
The response of laminar boundary layer flow past a semi-infinite flat plate to harmonic oscillations in the plate temperature in the form of a travelling wave convected in the direction of the free-stream has been studied here. Series solutions in terms of the small amplitude and the small oscillations to the non-linear system have been derived and the resulting nonlinear ordinary equations due to usual similarity transformations are solved numerically. The function affecting the temperature is shown on a graph. Due to greater viscous dissipative heat the function K 1, increases and it decreases with increasing Prandtl number. Also the time averaged heat flux function K 1(0) increases with Prandtl number and decreases due to greater viscous dissipative heat.  相似文献   

8.
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (\(Pr=0.15{-}7\)) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors’ knowledge, this behavior is illustrated here for the first time.  相似文献   

9.
In order to discuss the agreement of the ellipsoidal statistical BGK (ES-BGK) model with the Boltzmann equation, Burnett equations are computed by means of the second-order Chapman-Enskog expansion of the ES-BGK model. It is found that the Burnett equations for the ES-BGK model with the correct Prandtl number are identical to the Burnett equations for the Boltzmann equation for Maxwell molecules (fifth-order power potentials). However, for other types of particle interaction, the Boltzmann Burnett equations cannot be reproduced from the ES-BGK model.Furthermore, the linear stability of the ES-BGK Burnett equations is discussed. It is shown that the ES-BGK Burnett equations are linearly stable for Prandtl numbers of and for , while they are linearly unstable for and .Received: 29 April 2003, Accepted: 20 June 2003PACS: 510.10.-y, 47.45.-n Correspondence to: Y. Zheng  相似文献   

10.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

11.
An analysis of the results of numerical experiments in which the two-dimensional flow near a plate placed across an ascending fluid current was simulated is presented. The plate temperature was higher than that of the fluid. Fluid flows with a Prandtl number 0.25 Pr 7 were considered on the moderate Reynolds and Richardson number ranges 25 < Re 100 and 0 Ri < 20. Under these conditions, two flow patterns were observable, which differed from each other by the intensity of the transverse oscillations of a system consisting of attached twin vortices and the near wake. For different Prandtl numbers, in the (Re, Ri1/2) plane the pattern stability boundaries were established, together with the distinctive features of pattern-to-pattern transition. It was found that the vortex arrangement in the wake above the heated plate can differ from that in the von Kàrmàn street in the absence of buoyancy  相似文献   

12.
Two-dimensional steady-state thermal concentration convection in a rectangular porous cavity is simulated numerically. The temperature and concentration gradients are horizontal and the buoyancy forces act either in the same or in opposite directions. The flow through the porous medium is described by the Darcy-Brinkman or Forchheimer equations. The SIMPLER numerical algorithm based on the finite volume approach is used for solving the problem in the velocity-pressure variables.Numerous series of calculations were carried out over the range Ra t =3·106 and 3·107, 10-6 < Da < 1, 1 < N < 20, Le=10 and 100, where Ra, Da, Le, and N are the Rayleigh, Darcy, and Lewis numbers and the buoyancy ratio, respectively. It is shown that the main effect of the presence of the porous medium is to reduce the heat and mass transfer and attenuate the flow field with decrease in permeability. For a certain combination of the Ra, Le, and N numbers the flow has a multicellular structure. The mean Nusselt and Sherwood numbers are presented as functions of the governing parameters.  相似文献   

13.
The numerical analysis of heat transfer of laminar nanofluid flow over a fiat stretching sheet is presented. Two sets of boundary conditions (BCs) axe analyzed, i.e., a constant (Case 1) and a linear streamwise variation of nanopaxticle volume fraction and wall temperature (Case 2). The governing equations and BCs axe reduced to a set of nonlinear ordinary differential equations (ODEs) and the corresponding BCs, respectively. The dependencies of solutions on Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt are studied in detail. The results show that the reduced Nusselt number and the reduced Sherwood number increase for the BCs of Case 2 compared with Case 1. The increases of Nb, Nt, and Le numbers cause a decrease of the reduced Nusselt number, while the reduced Sherwood number increases with the increase of Nb and Le numbers. For low Prandtl numbers, an increase of Nt number can cause to decrease in the reduced Sherwood number, while it increases for high Prandtl numbers.  相似文献   

14.
An asymptotic (at high Reynolds and Görtler numbers) model of nonlinear longwave Görtler vortices localized inside the boundary layer near a concave surface located in a hypersonic viscous gas flow in the regime of weak viscidinviscid interaction is constructed. The maximum wavelength is evaluated. Numerical solutions are obtained for an inviscid local limit in the linear approximation. It is shown that an increase in the freestream Mach number exerts a stabilizing effect on the vortices, and a change in the Prandtl number has no significant effect on them. For the case where the vortices form a threelayered disturbed flow structure, it is shown analytically for the first time that surface heating exerts a stabilizing action on the vortices.  相似文献   

15.
A numerical analysis is presented for buoyancy driven flow of a Newtonian fluid contained in a two dimensional (R, ) hemispherical enclosure for high Rayleigh (Ra) numbers. It is assumed that the flow is driven by the uniformly distributed internal heat sources within the enclosure. All walls of the cavity are maintained at a constant temperature. Finite volume based SIMPLER algorithm has been used for the present analysis. Discretised governing equations, in primitive variables, are solved by a combination of Three Diagonal Matrix Algorithm (TDMA) and Point Successive Overrelaxation (PSOR) method. A benchmark solution prepared for a Ra number range of 107 to 1012 and Prandtl (Pr) number 7.0, shows an excellent agreement with the experimental results obtained from the open literature.  相似文献   

16.
This paper is devoted to analyzing numerically experimental observations of azimuthally travelling waves that appear in rotating convection in a circular container at intermediate Prandtl numbers. The instability is a Hopf bifurcation that gives rise to a pattern precessing generally counter to the rotation direction. Two types of modes can be differentiated, the fast modes with relatively high precession velocity whose amplitude peaks near the sidewall, and the slow modes whose amplitude peaks near the center. Results are presented for Prandtl number 6.8 and aspect ratio d/h equal to 2.5 as a function of the rotation rate. For rigid insulating sidewalls, and rigid thermally conducting top and bottom lids, the results agree well with those mesured experimentally.  相似文献   

17.
The approximate formula K a–2R(N–1), where a is a constant near 9 and R and N are the Rayleigh and Nusselt numbers, was proposed in [1] for the dimensionless kinetic energy K of convection in a horizontal layer of liquid. It is shown in the present paper that this expression is exact in linear and weakly nonlinear convection theory when the velocity and temperature fields are represented analytically [2–4]. The valuea is found to be 8.76 when the upper and lower boundaries of the layer are solid walls. The results are given of numerical calculations of the kinetic energy of the convection and the heat transfer in a wide range of Rayleigh numbers (up to 44 000) and Prandtl numbers (0.025 P 15). Analysis of the results shows that a is in fact a weak function of both R and P. If this is also the case at large R, it indicates a certain breaking of scaling of the mean convection characteristics at sufficiently large values of the Rayleigh number. It also indicates why laboratory experiments give values of n in the dependence N Rn which are generally slightly less than the theoretical value n = 1/3.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 11–18, September–October, 1981.We should like to thank N. F. Vel'tishchev for providing first data of the numerical experiments of [13–15].  相似文献   

18.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

19.
Nonlinear steady cellular convection in a fluid-saturated porous medium is investigated using the technique of spectral analysis. The effect of permeability is shown to contract the cell and to damp the convection process. The influence of Prandtl number, though small, is seen only in the fourth order term. The cross-interactions of the higher modes caused by nonlinear effects are considered through the modal Rayleigh number R . The possibility of the existence of a steady solution with two self-excited modes in certain regions is predicted. A detailed discussion of the heat transport is made. The theoretical value of the Nusselt number is found to be in good agreement with the experimental results. The similarities and qualitative differences between the present analysis and that of the power integral technique are brought out.  相似文献   

20.
The linear stability analysis of vertical throughflow of power law fluid for double-diffusive convection with Soret effect in a porous channel is investigated in this study. The upper and lower boundaries are assumed to be permeable, isothermal and isosolutal. The linear stability of vertical through flow is influenced by the interactions among the non-Newtonian Rayleigh number (Ra), Buoyancy ratio (N), Lewis number (Le), Péclet number (Pe), Soret parameter (Sr) and power law index (n). The results indicate that the Soret parameter has a significant influence on convective instability of power law fluid. It has also been noticed that buoyancy ratio has a dual effect on the instability of fluid flow. Further, it is noticed that the basic temperature and concentration profiles have singularities at \(Pe = 0\) and \(Le = 1\), the convective instability is looked into for the limiting case of \(Pe\rightarrow 0\) and \(Le \rightarrow 1\). For the case of pure thermal convection with no vertical throughflow, the present numerical results coincide with the solution of standard Horton–Rogers–Lapwood problem. The present results for critical Rayleigh number obtained using bvp4c and two-term Galerkin approximation are compared with those available in the literature and are tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号