首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The family of well-orderly maps is a family of planar maps with the property that every connected planar graph has at least one plane embedding which is a well-orderly map. We show that the number of well-orderly maps with n nodes is at most 2αn+O(logn), where α≈4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled planar graphs with n nodes, log2p(n)≤4.91n. The result is then used to show that asymptotically almost all (labeled or unlabeled), (connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges. Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.  相似文献   

2.
We describe a unified framework of aesthetic criteria and complexity measures for drawing planar graphs with polylines and curves. This framework includes several visual properties of such drawings, including aspect ratio, vertex resolution, edge length, edge separation, and edge curvature, as well as complexity measures such as vertex and edge representational complexity and the area of the drawing. In addition to this general framework, we present algorithms that operate within this framework. Specifically, we describe an algorithm for drawing any n-vertex planar graph in an O(n) × O(n) grid using polylines that have at most two bends per edge and asymptotically-optimal worst-case angular resolution. More significantly, we show how to adapt this algorithm to draw any n-vertex planar graph using cubic Bézier curves, with all vertices and control points placed within an O(n) × O(n) integer grid so that the curved edges achieve a curvilinear analogue of good angular resolution. All of our algorithms run in O(n) time.  相似文献   

3.
Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C n while keeping Ω(n 2/3) vertices fixed. For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G. One consequence is that every 3-connected planar graph has a drawing δ such that at most O((nlog n)2/3) vertices are fixed in every untangling of δ.  相似文献   

4.
It is important to minimize the area of a drawing of a graph, so that the drawing can fit in a small drawing-space. It is well-known that a planar graph with n vertices admits a planar straight-line grid drawing with O(n2) area [H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica 10(1) (1990) 41-51; W. Schnyder, Embedding planar graphs on the grid, in: Proceedings of the First ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138-148]. Unfortunately, there is a matching lower-bound of Ω(n2) on the area-requirements of the planar straight-line grid drawings of certain planar graphs. Hence, it is important to investigate important categories of planar graphs to determine if they admit planar straight-line grid drawings with o(n2) area.In this paper, we investigate an important category of planar graphs, namely, outerplanar graphs. We show that an outerplanar graph G with degree d admits a planar straight-line grid drawing with area O(dn1.48) in O(n) time. This implies that if d=o(n0.52), then G can be drawn in this manner in o(n2) area.  相似文献   

5.
The Calabi-Yau spaces with SU(n) holonomy can be studied by the algebraic way through the integer lattice where one can construct the Newton reflexive polyhedra or the Berger graphs. Our conjecture is that the Berger graphs can be directly related with the n-ary algebras. To find such algebras we study the n-ary generalization of the well-known binary norm division algebras, , which helped to discover the most important “minimal” binary simple Lie groups, U(1), SU(2) and G(2). As the most important example, we consider the case n = 3, which gives the ternary generalization of quaternions (octonions), 3 n , n = 2, 3, respectively. The ternary generalization of quaternions is directly related to the new ternary algebra (group) which are related to the natural extensions of the binary su(3) algebra (SU(3) group). Using this ternary algebra we found the solution for the Berger graph: a tetrahedron.
“Why geniosis live so short? They wanna stay kids.”
Alexey Dubrovski: On leave from JINR, Russia. Guennadi Volkov: On leave from PNPI, Russia.  相似文献   

6.
J. H. Kim  V. H. Vu 《Combinatorica》2006,26(6):683-708
Random regular graphs play a central role in combinatorics and theoretical computer science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald [10] and prove that it produces an asymptotically uniform random regular graph in a polynomial time. Precisely, for fixed d and n with d = O(n1/3−ε), it is shown that the algorithm generates an asymptotically uniform random d-regular graph on n vertices in time O(nd2). This confirms a conjecture of Wormald. The key ingredient in the proof is a recently developed concentration inequality by the second author. The algorithm works for relatively large d in practical (quadratic) time and can be used to derive many properties of uniform random regular graphs. * Research supported in part by grant RB091G-VU from UCSD, by NSF grant DMS-0200357 and by an A. Sloan fellowship.  相似文献   

7.
 A graph is a strict-quasi parity (SQP) graph if every induced subgraph that is not a clique contains a pair of vertices with no odd chordless path between them (an “even pair”). We present an O(n 3) algorithm for recognizing planar strict quasi-parity graphs, based on Wen-Lian Hsu's decomposition of planar (perfect) graphs and on the (non-algorithmic) characterization of planar minimal non-SQP graphs given in [9]. Received: September 21, 1998 Final version received: May 9, 2000  相似文献   

8.
Summary Nested dissection is an algorithm invented by Alan George for preserving sparsity in Gaussian elimination on symmetric positive definite matrices. Nested dissection can be viewed as a recursive divide-and-conquer algorithm on an undirected graph; it usesseparators in the graph, which are small sets of vertices whose removal divides the graph approximately in half. George and Liu gave an implementation of nested dissection that used a heuristic to find separators. Lipton and Tarjan gave an algorithm to findn 1/2-separators in planar graphs and two-dimensional finite element graphs, and Lipton, Rose, and Tarjan used these separators in a modified version of nested dissection, guaranteeing bounds ofO (n logn) on fill andO(n 3/2) on operation count. We analyze the combination of the original George-Liu nested dissection algorithm and the Lipton-Tarjan planar separator algorithm. This combination is interesting because it is easier to implement than the Lipton-Rose-Tarjan version, especially in the framework of existïng sparse matrix software. Using some topological graph theory, we proveO(n logn) fill andO(n 3/2) operation count bounds for planar graphs, twodimensional finite element graphs, graphs of bounded genus, and graphs of bounded degree withn 1/2-separators. For planar and finite element graphs, the leading constant factor is smaller than that in the Lipton-Rose-Tarjan analysis. We also construct a class of graphs withn 1/2-separators for which our algorithm does not achieve anO(n logn) bound on fill.The work of this author was supported in part by the Hertz Foundation under a graduate fellowship and by the National Science Foundation under Grant MCS 82-02948The work of this author was supported in part by the National Science Foundation under Grant MCS 78-26858 and by the Office of Naval Research under Contract N00014-76-C-0688  相似文献   

9.
 Let G be a planar graph of n vertices, v 1,…,v n , and let {p 1,…,p n } be a set of n points in the plane. We present an algorithm for constructing in O(n 2) time a planar embedding of G, where vertex v i is represented by point p i and each edge is represented by a polygonal curve with O(n) bends (internal vertices). This bound is asymptotically optimal in the worst case. In fact, if G is a planar graph containing at least m pairwise independent edges and the vertices of G are randomly assigned to points in convex position, then, almost surely, every planar embedding of G mapping vertices to their assigned points and edges to polygonal curves has at least m/20 edges represented by curves with at least m/403 bends. Received: May 24, 1999 Final version received: April 10, 2000  相似文献   

10.
We present a parallel randomized algorithm running on aCRCW PRAM, to determine whether two planar graphs are isomorphic, and if so to find the isomorphism. We assume that we have a tree of separators for each planar graph (which can be computed by known algorithms inO(log2 n) time withn1 + εprocessors, for any ε > 0). Ifnis the number of vertices, our algorithm takesO(log(n)) time with processors and with a probability of failure of 1/nat most. The algorithm needs 2 · log(m) − log(n) + O(log(n)) random bits. The number of random bits can be decreased toO(log(n)) by increasing the number of processors ton3/2 + ε, for any ε > 0. Our parallel algorithm has significantly improved processor efficiency, compared to the previous logarithmic time parallel algorithm of Miller and Reif (Siam J. Comput.20(1991), 1128–1147), which requiresn4randomized processors orn5deterministic processors.  相似文献   

11.
We prove that the identity
holds for all directed graphs G and H. Similar bounds for the usual chromatic number seem to be much harder to obtain: It is still not known whether there exists a number n such that χ(G×H) ≥ 4 for all directed graphs G, H with χ(G) ≥ χ(H) ≥ n. In fact, we prove that for every integer n ≥ 4, there exist directed graphs Gn, Hn such that χ(Gn) = n, χ(Hn) = 4 and χ(Gn×Hn) = 3.  相似文献   

12.
 We prove that for every ε>0 and positive integer r, there exists Δ00(ε) such that if Δ>Δ0 and n>n(Δ,ε,r) then there exists a packing of K n with ⌊(n−1)/Δ⌋ graphs, each having maximum degree at most Δ and girth at least r, where at most εn 2 edges are unpacked. This result is used to prove the following: Let f be an assignment of real numbers to the edges of a graph G. Let α(G,f) denote the maximum length of a monotone simple path of G with respect to f. Let α(G) be the minimum of α(G,f), ranging over all possible assignments. Now let αΔ be the maximum of α(G) ranging over all graphs with maximum degree at most Δ. We prove that Δ+1≥αΔ≥Δ(1−o(1)). This extends some results of Graham and Kleitman [6] and of Calderbank et al. [4] who considered α(K n ). Received: March 15, 1999?Final version received: October 22, 1999  相似文献   

13.
We study random subgraphs of the n-cube {0,1}n, where nearest-neighbor edges are occupied with probability p. Let pc(n) be the value of p for which the expected size of the component containing a fixed vertex attains the value λ2n/3, where λ is a small positive constant. Let ε=n(ppc(n)). In two previous papers, we showed that the largest component inside a scaling window given by |ε|=Θ(2n/3) is of size Θ(22n/3), below this scaling window it is at most 2(log 2)−2, and above this scaling window it is at most O(ε2n). In this paper, we prove that for the size of the largest component is at least Θ(ε2n), which is of the same order as the upper bound. The proof is based on a method that has come to be known as “sprinkling,” and relies heavily on the specific geometry of the n-cube.  相似文献   

14.
We discuss the range of values for the integrity of a graphs G(n, k) where G(n, k) denotes a simple graph with n vertices and k edges. Let I max(n, k) and I min(n, k) be the maximal and minimal value for the integrity of all possible G(n, k) graphs and let the difference be D(n, k) = I max(n, k) − I min(n, k). In this paper we give some exact values and several lower bounds of D(n, k) for various values of n and k. For some special values of n and for s < n 1/4 we construct examples of graphs G n  = G n (n, n + s) with a maximal integrity of I(G n ) = I(C n ) + s where C n is the cycle with n vertices. We show that for k = n 2/6 the value of D(n, n 2/6) is at least \frac?6-13n{\frac{\sqrt{6}-1}{3}n} for large n.  相似文献   

15.
In a complete bipartite decomposition π of a graph, we consider the number ϑ(v;π) of complete bipartite subgraphs incident with a vertex v. Let ϑ(G)= ϑ(v;π). In this paper the exact values of ϑ(G) for complete graphs and hypercubes and a sharp upper bound on ϑ(G) for planar graphs are provided, respectively. An open problem proposed by P.C. Fishburn and P.L. Hammer is solved as well.  相似文献   

16.
A graph is called H-free if it contains no copy of H. Denote by f n (H) the number of (labeled) H-free graphs on n vertices. Erdős conjectured that f n (H) ≤ 2(1+o(1))ex(n,H). This was first shown to be true for cliques; then, Erdős, Frankl, and R?dl proved it for all graphs H with χ(H)≥3. For most bipartite H, the question is still wide open, and even the correct order of magnitude of log2 f n (H) is not known. We prove that f n (K m,m ) ≤ 2 O (n 2−1/m ) for every m, extending the result of Kleitman and Winston and answering a question of Erdős. This bound is asymptotically sharp for m∈{2,3}, and possibly for all other values of m, for which the order of ex(n,K m,m ) is conjectured to be Θ(n 2−1/m ). Our method also yields a bound on the number of K m,m -free graphs with fixed order and size, extending the result of Füredi. Using this bound, we prove a relaxed version of a conjecture due to Haxell, Kohayakawa, and Łuczak and show that almost all K 3,3-free graphs of order n have more than 1/20·ex(n,K 3,3) edges.  相似文献   

17.
The critical group C(G) of a graph G is a refinement of the number of spanning trees of the graph and is closely connected with the Laplacian matrix. Let r(G) be the minimum number of generators (i.e., the rank) of the group C(G) and β(G) be the number of independent cycles of G. In this paper, some forbidden induced subgraphs are given for r(G) = n − 3 and all graphs with r(G) = β(G) = n − 3 are characterized.  相似文献   

18.
In this paper, we study the chaotic numbers of complete bipartite graphs and complete tripartite graphs. For the complete bipartite graphs, we find closed-form formulas of the chaotic numbers and characterize all chaotic mappings. For the complete tripartite graphs, we develop an algorithm running in O(n 4 3) time to find the chaotic numbers, with n 3 the number of vertices in the largest partite set.Research supported by NSC 90-2115-M-036-003.The author thanks the authors of Ref. 6, since his work was motivated by their work. Also, the author thanks the referees for helpful comments which made the paper more readable.  相似文献   

19.
We study a hierarchy of canonical representations of grpahs as subgraphs of cartesian products of graphs. This hierarchy starts with the isometric representation, includes the 2-isometric represnetation, and ends with the cartesian prime factorization. We show that all three representations can be obtained in O(nm) time using O(m) space, for graphs with n vertices and m edges. The algorithms have immediate parallel versions that use n3 processors and run in O(log2 n) time. © 1929 John Wiley & Sons, Inc.  相似文献   

20.
Let c(n) be the maximum number of cycles in an outerplanar graph with n vertices. We show that lim c(n)1/n exists and equals β = 1.502837 . . ., where β is a constant related to the recurrence xn+1 = 1 + xn2,  x0=1{x_{n+1} = 1 + x_n^2, \, x_0=1}. The same result holds for the larger class of series–parallel graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号