首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of thermal properties of CuO dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K has been performed. Thermal conductivities have been studied by the steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels. Heat capacities have been measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” Results for thermal conductivities can be well justified using a classical model (Hamilton–Crosser), and experimental measurements of heat capacities can be justified with a model of particles in thermal equilibrium with the base fluid.  相似文献   

2.
A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - This research deals with experimental studies on thermal conductivity variation of Al2O3 and TiO2 hybrid nanofluids with water as the base fluid. In...  相似文献   

4.
5.
Journal of Thermal Analysis and Calorimetry - In the present work, an investigation on the relationship between clustering phenomenon and thermal conductivity of nanofluids is presented....  相似文献   

6.
7.
Journal of Thermal Analysis and Calorimetry - Nanofluids have gained recent attention because of their potential applications in diverse engineering fields like enhancing thermal transport,...  相似文献   

8.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
10.
The effect of nanoparticle size (4~44 nm) on the thermal conductivities of heat transfer oils has been systematically examined using iron oxide nanoparticles. Such Fe(3)O(4) nanoparticles were synthesized by a simple one-pot pyrolysis method. The size (16~44 nm), shape and assembly patterns of monodisperse Fe(3)O(4) nanoparticles were modulated by only controlling the amount of Fe(acac)(3). After the as-prepared Fe(3)O(4) NPs were dispersed in heat transfer oils, the prepared magnetic nanofluids exhibit higher thermal conductivity than heat transfer oils, and the enhanced values increase with a decrease in particle size. In addition, the viscosities of all nanofliuids are remarkably lower than that of the base fluid, which has been found for the first time in the nanofluid field. The promising features offer potential application in thermal energy engineering.  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - Nanofluids are new heat transfer fluids obtained by suspending different nanoparticles in a base fluid. This research deals with a complex numerical...  相似文献   

12.
通过共沉淀法和沉积-沉淀法制备出了具有良好热稳定性的Al2O3改性Fe2O3基金催化剂, 并通过透射电镜(TEM)、X射线衍射(XRD)、N2吸附-脱附及热重和差示扫描量热(TG-DSC)分析等表征手段对催化剂的结构与表面形貌进行了研究分析. TEM测试结果表明: 500 ℃焙烧后, 未掺杂Al2O3的催化剂中金颗粒粒径分布较宽, 平均粒径约为7.0 nm, 载体颗粒尺寸在50-100 nm范围内; 而掺杂Al2O3的催化剂中金颗粒粒径分布变窄, 平均粒径约为5.0 nm, 且载体颗粒大小也明显小于未掺杂Al2O3的催化剂, 保持在30-50 nm的范围内. N2吸附-脱附测试结果表明, Al2O3的掺杂有利于保持催化剂的介孔结构和比表面积, 从而提高了载体的热稳定性. XRD和TG-DSC测试结果表明, Al2O3的掺杂可以有效地抑制Fe2O3的结晶, 进而抑制了高温焙烧过程中金颗粒的长大. 选用CO低温氧化反应对催化剂的活性进行了评价, 即使在500 ℃高温下焙烧12 h, 掺杂了Al2O3的催化剂仍然可在26.7 ℃将CO完全转化, 而未掺杂Al2O3的催化剂CO最低完全转化温度(T100)高达61.6 ℃. Al2O3的掺杂显著提高了催化剂的热稳定性能.  相似文献   

13.
14.
Experimental investigations on binary liquid mixtures near the critical mixing point are presently leading to a controversy about the anomaly in the thermal conductivity. A photopyroelectric technique is used to determine the thermal conductivity and the effusivity of the binary liquid mixture n-butoxyethanol-water at its critical concentration near the critical mixing point. It is proven that, contrary to previous reports, there is no critical enhancement in the thermal conductivity. The specific heat capacity is calculated from these results and compared with the results from measurements performed by adiabatic scanning calorimetry.  相似文献   

15.
The thermal conductivity of a number of ferrofluids consisting of colloidally dispersed Fe3O4 particles in diester, hydrocarbon, water and fluorcarbon carriers have been measured at 38°C. The variation in thermal conductivity with particle concentration is well described by Tareef's equation (1940). This has enabled the ratio of the physical to magnetic size to be determined and compared with estimates of the ratio obtained from electron micrographs and magnetic measurements.The fit between theory and experiment is particularly good for hydrocarbon carrier fluids giving the ratio of solid to magnetic radiusR i/R m=1.24±0.03 compared with the value obtained from magnetic data and electron micrographs of 1.19±0.07. The corresponding value from the fluids with a diester carrier ranges between 1.1<R d/R m<1.3 which is again consistent with microscopy and magnetic data.The application of a magnetic field of 0.1 T had no noticeable effect on the thermal conductivities of ferrofluids.  相似文献   

16.
不同含量Y2O3的ZrO2对Al2O3复合陶瓷热震稳定性的影响   总被引:4,自引:0,他引:4  
含2% (摩尔分数) Y2O3的ZrO2 (简称TZP(2Y)) 和3% (摩尔分数) Y2O3的ZrO2 (简称PSZ(3Y)) 分别以15%(体积分数)添加到Al2O3基体中, 经1550 ℃真空烧结.实验表明, Al2O3复合材料的性能均高于单相Al2O3陶瓷, 并且Al2O3/PSZ(3Y)的抗热震性优于Al2O3/TZP(2Y). 提高改善复合材料的抗热震性是ZrO2(Y2O3)多种增韧机制的作用. 理论计算表明, Al2O3陶瓷和Al2O3/TZP(2Y), Al2O3/PSZ(3Y)复合材料的断裂功分别为38, 100.8, 126.2 J·m-2. Al2O3/TZP(2Y) 和 Al2O3/PSZ(3Y)复合材料的裂纹萌生阻力是Al2O3陶瓷的1.41倍和1.57倍, 而裂纹扩展阻力是Al2O3陶瓷的1.38倍和1.46倍, 与热震实验残余强度的结果一致.  相似文献   

17.
The presence of h-BN phase in the composites, in which it is fulfilling a role of a solid lubricant, causes the appearance of the anisotropy of the elastic properties and thermal properties. In order to assess the extent of the phenomenon, velocity changes of ultrasonic wave propagation were measured and thermal conductivity changes were researched. Measurements were carried out on composites of alumina matrix, which had h-BN introduced in an amount of 0–30 vol.%. The study included measurements of the speed of propagation of ultrasound waves and thermal conductivity, which were made in two directions, namely, perpendicular and parallel directions to the axis of compression. Strong dependence of the thermal conductivity anisotropy of the phase composition of materials was revealed.  相似文献   

18.
Thermal conductivity behaviour was studied for two TiO2 nano-powders with different nanocrystalline structures, viz. anatase and rutile, as well as nanofluids formulated as dispersions of these two oxides up to volume concentrations of 8.5% in two different glycols, viz. ethylene and propylene glycol. Because it is known that titanium dioxide can exhibit three different crystalline structures, the dry nano-powders were analysed using X-ray Diffraction to determine the nanocrystalline structure of the powders. Two different techniques were employed in the thermal conductivity study of the materials. Dry nano-powders, with and without compaction, were analysed at room temperature by using a device based on the guarded heat flow meter method. Nanofluids and base fluids were studied with a transient hot wire technique over the temperature range from (283.15 to 343.15) K. The base fluid propylene glycol was measured by using both techniques in order to verify the good agreement between both sets of results. The experimental measurements presented in this work were compared with other literature data for TiO2 nanofluids in order to understand the thermal conductivity enhancement as a function of nanoparticle concentration. Different theoretical or semi-theoretical approaches such as Maxwell, Peñas et al., Yu-Choi were evaluated comparing with our experimental values. A parallel model was used to predict thermal conductivities employing experimental values for dry nanopowder.  相似文献   

19.
Number of lithium-based oxide ceramics in Li–Al–Si–O system were synthesized by solid-state reaction route using Li2CO3, Al2O3, and SiO2. The progress of the reaction was monitored using thermogravimetry. A model-free approach was employed to fit the temperature versus mass loss data. Heat capacities were measured as a function of temperature using differential scanning calorimetry. Variation of lithium/silicon ratio resulted in change in heat capacity and average crystallite size in each compound.  相似文献   

20.
The advanced construction of a two-channel ac calorimeter for simultaneous measurements of frequency-dependent complex heat capacity C(ω) and complex thermal conductivity λ(ω) is presented. In the new calorimeter, the number of interfaces with thermal-wave reflections was reduced. Thus, the new construction can be easily calibrated with higher precision and is simpler in handling than the previous one. The new construction allows to measure thermal conductivity in steady-state mode, as well as frequency-dependent complex thermal properties in ac mode, in the same measuring cell. The capabilities of this technique were demonstrated, being applied for simultaneous measurements of complex effusivity, diffusivity, heat capacity, and thermal conductivity of glycerol in the glass transition region. The so-called ac and dc thermal conductivities of glycerol were measured as a function of temperature. It was shown that the double-channel ac calorimetry is a technique, which can be used for reliable distinguishing of relaxation processes related to relaxing thermal conductivity or relaxing heat capacity.In the region apart from phase transitions, the calorimeter provides the unique possibility of simultaneous measurements of the thermal contact properties together with the sample’s thermal parameters. The improvement of the accuracy gave us the possibility to observe the thermal contact resistance, leading to a step of 1 and 5% in the temperature-modulation amplitude at the cell/sample interface in the case of liquid samples such as Apiezon™-H grease and glycerol, respectively. A step of 25% was observed in the case of a dry thermal contact between the cell and an ethylene-1-octene copolymer sample. Thus, the thermal contact resistance must be taken into account in the temperature-modulated calorimetry, especially in the case of a dry cell/sample contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号