首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicochemical properties and reactivity of amorphous aluminas, Al2O3(C1) and Al2O3(N), which were prepared by the thermal decomposition of AlCl3 · 6 H2O and Al(NO3)3 · 9 H2O at 600°C for 2–300 h, were investigated by means of TG, DTA, X-ray diffraction, SEM and IR. The reactivity of Al2O3(Cl) for ZnAl2O4 formation was, in general, higher than that of Al2O3(N) and was influenced by the content of residual chlorine in Al2O3(Cl). The rate of ZnAl2O4 formation followed the Avrami—Erofeev equation in the ZnOAl2O3(Cl) system and the Jander equation ZnOAl2O3(N) system, respectively.  相似文献   

2.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

3.
On the Compound BaO · Al2O3 · 7 H2O On the basis of investigations using 27Al, 1H NMR, IR and thermoanalytical methods for the compound BaO · Al2O3 · 7 H2O a constitution as Ban[Al2(OH)8]n · 3n H2O with condensed AlO6 groups, sharing edges, is proposed. Relations between the Ba/Al ratio and the constitution of anions of barium aluminate hydrates are discussed.  相似文献   

4.
CuFe2(C2O4)3·4.5H2O was synthesized by solid-state reaction at low heat using CuSO4·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The spinel CuFe2O4 was obtained via calcining CuFe2(C2O4)3·4.5H2O above 400 °C in air. The CuFe2(C2O4)3·4.5H2O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, Fourier transform FT-IR, X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer, and vibrating sample magnetometer. The result showed that CuFe2O4 obtained at 400 °C had a saturation magnetization of 33.5 emu g?1. The thermal process of CuFe2(C2O4)3·4.5H2O experienced three steps, which involved the dehydration of four and a half crystal water molecules at first, then decomposition of CuFe2(C2O4)3 into CuFe2O4 in air, and at last crystallization of CuFe2O4. Based on KAS equation, OFW equation, and their iterative equations, the values of the activation energy for the thermal process of CuFe2(C2O4)3·4.5H2O were determined to be 85 ± 23 and 107 ± 7 kJ mol?1 for the first and second thermal process steps, respectively. Dehydration of CuFe2(C2O4)3·4.5H2O is multistep reaction mechanisms. Decomposition of CuFe2(C2O4)3 into CuFe2O4 could be simple reaction mechanism, probable mechanism function integral form of thermal decomposition of CuFe2(C2O4)3 is determined to be 1 ? (1 ? α)1/4.  相似文献   

5.
Glass-formation boundaries in the Al(IO3)3-Al2(SO4)3-H2O system are determined. The IR spectra of glassy and crystalline Al(IO3)3 · 8H2O samples are measured. The structure and properties of glassy Al(IO3)3 · 10H2O are compared to those of glassy Al2(SO4)3 · 10H2O.  相似文献   

6.
(1.2–8.3)%FeOх/Al2O3 monolith catalysts have been prepared by impregnating alumina with aqueous solutions of iron(III) nitrate and oxalate and have been tested in NH3 oxidation and in the selective decomposition of N2O in mixtures resulting from ammonia oxidation over a Pt–Rh gauze pack under conditions of nitric acid synthesis (800–900°C). In the case of the support calcined at 1200°C, the catalyst is dominated by bulk Fe2O3 particles localized on the Al2O3 surface. The activity of these samples in both reactions decreases with a decreasing active component content, thus limiting the potential of Fe2(C2O4)3 · 5H2O, an environmentally friendlier but poorly soluble compound, as a substitute for Fe(NO3)3 · 9H2O. Decreasing the support calcination temperature to 1000°C or below leads to the formation of a highly defective Fe–Al–O solid solution in the (1.2–2.7)%FeOх/Al2O3 catalysts. The surface layers of the solid solution are enriched with iron ions or stabilize ultrafine FeOх particles. The catalytic activity of these samples in both reactions is close to the activities measured for ~8%FeOх/Al2O3 samples prepared using iron nitrate.  相似文献   

7.
The thermal behaviour of three coordination compounds, potential precursors of nickel ferrite [Fe2Ni(C4H4O5)2.5(OH)2]NO3·5H2O,[Fe2Ni(C4H8O3N2)4](NO3)8·24H2O and (NH4)[Fe2Ni(C4H4O5)3(OH)3]·3H2O has been investigated to evaluate their suitability as precursors for nickel ferrite. For a complete and reliable assignment of the thermal transformations, the isolable solid intermediates and end products were characterized by IR, X-ray diffraction and Mössbauer investigations. A decomposition scheme is proposed.  相似文献   

8.
The hexahydrate of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O does not show phase transitions in the range of 233–328 K when the compound melts in its own water of crystallization. It is suggested that the thermal decomposition is a complex step-wise process, which involves the condensation of 6 mol of the initial monomer Pr(NO3)3·6H2O into a cyclic cluster 6[Pr(NO3)3·6H2O]. This hexamer gradually loses water and nitric acid, and a series of intermediate amorphous oxynitrates is formed. The removal of 68% HNO3–32% H2O azeotrope is essentially a continuous process occurring in the liquid phase. At higher temperatures, oxynitrates undergo thermal degradation and lose water, nitrogen dioxide and oxygen, leaving behind normal praseodymium oxide Pr2O3. The latter absorbs approximately 1 mol of atomic oxygen from N2O5 disproportionation, giving rise to the non-stoichiometric higher oxide Pr2O3.33. All mass losses are satisfactorily accounted for under the proposed scheme of thermal decomposition.  相似文献   

9.
The nonahydrate of iron(III) nitrate shows no phase transitions in the range of ?40 to 0 °C. Both hexahydrate Fe(NO3)3·6H2O and nonahydrate Fe(NO3)3·9H2O have practically the same thermal behavior. Thermal decomposition of iron nitrate is a complex process which has a different mechanism than those described for other trivalent elements. Thermolysis begins with the successive condensation of 4 mol of the initial monomer accompanied by the loss of 4 mol of nitric acid. At higher temperature, hydrolytic processes continue with the gradual elimination of nitric acid from resulting tetramer and dimeric iron oxyhydroxide Fe4O4(OH)4 is formed. After complete dehydration, oxyhydroxide is destroyed leaving behind 2 mol of Fe2O3. The molecular mechanics method provides a helpful insight into the structural arrangement of intermediate compounds.  相似文献   

10.
The Bi2Fe2(C2O4)5·5H2O was synthesized by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The nanocrystalline BiFeO3 was obtained by calcining Bi2Fe2(C2O4)5·5H2O at 600 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, FT-IR, X-ray powder diffraction, and vibrating sample magnetometer. The data showed that highly crystallized BiFeO3 with hexagonal structure [space group R3c(161)] was obtained when the precursor was calcined at 600 °C in air for 1.5 h. The thermal process of the precursor in air experienced five steps which involved, at first, the dehydration of an adsorption water molecule, then dehydration of four crystal water molecules, decomposition of FeC2O4 into Fe2O3, decomposition of Bi2(C2O4)3 into Bi2O3, and at last, reaction of Bi2O3 and Fe2O3 into hexagonal BiFeO3. Based on Starink equation, the values of the activation energies associated with the thermal process of Bi2Fe2(C2O4)5·5H2O were determined. Besides, the most probable mechanism functions and thermodynamic functions (ΔS , ΔH , and ΔG ) of thermal processes of Bi2Fe2(C2O4)5·5H2O were also determined.  相似文献   

11.
The kinetics of individual stages of thermal decomposition of Al2(SO4)3·18H2O were studied by TG method. It is found that Al2(SO4)3·18H2O decomposes to Al2O3 in four major stages, all of endothermic. Some of these major stages are formed by sub-stages. The first three major stages are dehydration reactions in which two, ten and six moles water are lost, respectively. The last major stage is sulfate decomposition. In this study the kinetic parameter values of these major and sub-stages were calculated by integral and differential methods. The alterations of activation energies with respect to the decomposition ratio and to the method were investigated.  相似文献   

12.
On the Crystalline Phases of the Systems M O? Al2O3? H2O (MI = K, Na) In the system K2O? Al2O3? H2O the compounds K2O · Al2O3 · 3 H2O, K2O · Al2O3 · 2 H2O and K2O · Al2O3 · 1 H2O exist. The results of 27Al and 1H NMR and IR spectroscopic investigations as well as thermoanalytical measurements confirm the existence of dimeric anions with tetrahedrally coordinated Al for the 3-hydrate. In the case of the two other hydrates higher molecular anions occur, also formed by AlO4 tetrahedra. In the system Na2O? Al2O3? H2O a compound with a composition Na2O · Al2O3 · 2,5 H2O and two alkali oxide rich phases (Na/Al > 3) are observed. In monosodium aluminate hydrate there are highly polymerized anions with tetrahedrally coordinated Al, whereas the alkali oxide rich phases are probably built up by monomeric [Al(OH)6]3? anions.  相似文献   

13.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

14.
Individual nitrates, UO2(NO3)2·6H2O and Fe(NO3)3·9H2O as well as their binary mixtures in various mol ratios have been studied using simultaneous thermal techniques and X-ray powder diffraction measurements. Nature and stoichiometry of hydroxynitrates of iron and uranium were altered by changing the heating rates for the equal mass of binary nitrate mixtures under identical gas flow conditions. Evolved gas analysis and thermogravimetric measurements indicated the absence of direct interaction between two nitrates in the binary nitrate mixtures. Both the nitrates decomposed independently in the mixtures to their respective oxides. These results have been supported by X-ray powder diffraction measurements. Phase diagram of UO2(NO3)2·6H2O–Fe(NO3)3·9H2O system containing 0–100 mol% of UO2(NO3)2·6H2O was constructed using differential thermal analysis technique. The formation of the eutectic at 33 °C for 50 mol% uranyl nitrate hexahydrate–50 mol% iron (III) nitrate nonahydrate mixture has been observed for the first time.  相似文献   

15.
CeO2 was synthesized by calcining Ce2(C2O4)3·8H2O above 673 K in air. The precursor and its calcined products were characterized using thermogravimetry and differential scanning calorimetry, Fourier transform infrared spectra, X-ray powder diffraction, scanning electron microscopy, and UV–Vis absorption spectroscopy. The result showed that cubic CeO2 was obtained when the precursor was calcined above 673 K in air for 2 h. The UV–Vis absorption spectroscopy studies showed that superfine CeO2 behaved as an excellent UV-shielding material. The thermal decomposition of the precursor in air experienced two steps, which are: first, the dehydration of eight crystal water molecules, then the decomposition of Ce2(C2O4)3 into cubic CeO2. The values of the activation energies associated with the thermal decomposition of Ce2(C2O4)3·8H2O were determined based on the Starink equation.  相似文献   

16.
The thermal decomposition of tribochemically activated Al2(SO4)3·xH2O was studied by TG, DTA and EMF methods. For some of the intermediate solids, X-ray diffraction and IR-spectroscopy were applied to learn more about the reaction mechanism. Thermal and EMF studies confirmed that, even after mechanical activation of Al2(SO4)3·xH2O, Al2O(SO4)2 is formed as an intermediate. Isothermal kinetic experiments demonstrated that the thermochemical sulphurization of inactivated Al2(SO4)3·xH2O has an activation energy of 102.2 kJ·mol?1 in the temperature range 850–890 K. The activation energy for activated Al2(SO4)3·xH2O in the range 850–890 K is 55.0 kJ·mol?1. The time of thermal decomposition is almost halved when Al2(SO4)3·xH2O is activated mechanically. The results permit conclusions concerning the efficiency of the tribochemical activation of Al2(SO4)3·xH2O and the chemical and kinetic mechanisms of the desulphurization process.  相似文献   

17.
The etherate of (Ph2SiO)8[Al(O)OH]4 can be transformed into the pyrazine adduct (Ph2SiO)8[Al(O)OH]4 · 3N(C2H2)2N ( 1 ), the ethyl acetate adduct (Ph2SiO)8[Al(O)OH]4 · 3H3C-C(O)OC2H5 ( 2 ), the 1,6-hexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 2HO–CH2(CH2)4CH2–OH ( 3 ) and the 1,4-cyclohexane diol adduct (Ph2SiO)8[Al(O)OH]4 · 4HO–CH(CH2CH2)2CH–OH ( 4 ). In all compounds the OH groups of the starting material bind to the bases through O–H ··· N ( 1 ) or O–H ··· O hydrogen bonds ( 2 , 3 , 4 ) as found from single-crystal X-ray diffraction analyses. Whereas in 1 only three of the central OH groups bind to the pyrazines, in 2 two of them bind to the same carbonyl oxygen atom of the ethyl acetate resulting in an unprecedented O–H ··· O ··· H–O double hydrogen bridge. The hexane diol adduct 3 in the crystal forms a one-dimensional coordination polymer with an intramolecularly to two OH groups grafted hexane diol loop, while the second hexane diol is connecting intermolecularly. In the cyclohexane diol adduct 4 all OH groups of the central Al4(OH)4 ring bind to different diols, leaving one alcohol group per diol uncoordinated. These “free” OH groups form an (O-H ··· )4 assembly creating a three-dimensional overall structure. When reacting with (Ph2SiO)8[Al(O)OH]4 lysine loses water, turns into the cyclic 3-amino-2-azepanone, and transforms through chelation of one of the aluminum atoms the starting material into a new polycycle. The isolated compound has the composition (Ph2SiO)12[Al(O)OH]4[Al2O3]2 · 4 C6H12N2O · 6(CH2)4O ( 5 ).  相似文献   

18.
Thermal analysis complimented with evolved gas mass spectrometry has been applied to hydrotalcites containing carbonate prepared by coprecipitation and with varying divalent/trivalent cation ratios. The resulting materials were characterised by XRD, and TG/DTG to determine the stability of the hydrotalcites synthesised. Hydrotalcites of formula Mg4(Fe,Al)2(OH)12(CO3)·4H2O, Mg6(Fe,Al)2(OH)16(CO3)·5H2O, and Mg8(Fe,Al)2(OH)20(CO3)·8H2O were formed by intercalation with the carbonate anion as a function of the divalent/trivalent cationic ratio. XRD showed slight variations in the d-spacing between the hydrotalcites. The thermal decomposition of carbonate hydrotalcites consists of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides and spinels, including MgO, MgAl2O4, and MgFeAlO4.  相似文献   

19.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

20.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号