首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于应变能准则优化模型的骨骼重建数值模拟   总被引:1,自引:0,他引:1  
将骨骼重建的适应性弹性理论及参考应变能理论与结构优化及有限元方法结合,建立了基于应变能准则优化模型的骨骼重建数值模拟方法,研究骨骼内部重建的机理和规律。以单元应变能密度为刺激源,由内部材料的分布变化来模拟骨重建的过程和规律。通过对股骨头重建的数值模拟,取得了与临床实验相符的结果,也证实了骨结构形态是对力学环境的最佳适应,定量地反映了力学刺激对骨骼重建的影响,得到了符合骨骼重建规律的结论。  相似文献   

2.
The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.  相似文献   

3.
A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.  相似文献   

4.
The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroidinjection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional stnactures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.  相似文献   

5.
In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.  相似文献   

6.
A bone remodeling model taking into account the viscoelastic properties of the material is proposed. The nonlinear equations governing the evolution of the bone apparent density are solved by a finite difference method in the unidimensional case of a n-unit elements model. The results show the effects of the viscous damping on the structure for a controlled mechanical loading. To cite this article: S. Baïotto, M. Zidi, C. R. Mecanique 332 (2004).  相似文献   

7.
含损伤演化的TM耦合数值模型及其应用研究   总被引:3,自引:0,他引:3  
从岩石材料的细观结构层次出发,应用损伤力学和热弹性理论,对热力耦合作用下岩石破裂 过程中热-应力相互作用关系进行了分析. 初步建立了细观岩石热-力(TM)耦合数值模型, 探讨了TM耦合作用下岩石材料的细观结构损伤及其诱发的材料力学性能演化机制,把岩石 热固耦合问题的研究从应力状态分析深入到损伤、破坏过程分析之中. 运用该数值模型对某 硬岩实验室开展的原位尺度实验中的废料处理井间柱稳定性进行了模拟分析,其应力场、岩 石剥离破坏形态及破坏诱发的AE特性等均与实验监测结果表现出了较好的一致性,证 明了该数值模型的合理性和有效性.  相似文献   

8.
9.

The lacunar-canalicular system (LCS) is acknowledged to directly participate in bone tissue remodeling. The fluid flow in the LCS is synergic driven by the pressure gradient and electric field loads due to the electro-mechanical properties of bone. In this paper, an idealized annulus Maxwell fluid flow model in bone canaliculus is established, and the analytical solutions of the fluid velocity, the fluid shear stress, and the fluid flow rate are obtained. The results of the fluid flow under pressure gradient driven (PGD), electric field driven (EFD), and pressure-electricity synergic driven (P-ESD) patterns are compared and discussed. The effects of the diameter of canaliculi and osteocyte processes are evaluated. The results show that the P-ESD pattern can combine the regulatory advantages of single PGD and EFD patterns, and the osteocyte process surface can feel a relatively uniform shear stress distribution. As the bone canalicular inner radius increases, the produced shear stress under the PGD or P-ESD pattern increases slightly but changes little under the EFD pattern. The increase in the viscosity makes the flow slow down but does not affect the fluid shear stress (FSS) on the canalicular inner wall and osteocyte process surface. The increase in the high-valent ions does not affect the flow velocity and the flow rate, but the FSS on the canalicular inner wall and osteocyte process surface increases linearly. In this study, the results show that the shear stress sensed by the osteocyte process under the P-ESD pattern can be regulated by changing the pressure gradient and the intensity of electric field, as well as the parameters of the annulus fluid and the canaliculus size, which is helpful for the osteocyte mechanical responses. The established model provides a basis for the study of the mechanisms of electro-mechanical signals stimulating bone tissue (cells) growth.

  相似文献   

10.
Bone remodeling I: theory of adaptive elasticity   总被引:3,自引:0,他引:3  
A thermomechanical continuum theory involving a chemical reaction and mass transfer between two constituents is developed here as a model for bone remodeling. Bone remodeling is a collective term for the continual processes of growth, reinforcement and resorbtion which occur in living bone. The resulting theory describes an elastic material which adapts its structure to applied loading.
Zusammenfassung Eine Thermo-mechanische kontinuum Theorie als Modell für die Knochenrekonstrucktion wird entwickelt, die eine chemische Reaktion und einen Massentransport zwischen zwei Komponenten behandelt. Knochenrekonstruktion ist ein Sammelbegriff für die kontinuierlichen Prozesse des Wachsens, der Verstärkung und des Abbaus wie sie im lebenden Knochen auftreten. Die Theorie beschreibt ein elastisches Material, das sich in der Form der Belastung anpasst.
  相似文献   

11.
骨组织受力变形后其内部液体就会流动,同时在其微观结构——骨单元壁中扩散,并进一步产生一系列与骨液流动相关的物理效应,如流体剪切应力、流动电位等,这些物理效应被细胞感知并做出破骨或成骨等反应,来使骨适应外部载荷环境.鉴于骨组织产生的内部液体流动很难实验测定,理论模拟是目前的主要研究手段.基于骨单元的多孔弹性性质建立了骨小管内部液体的流动模型,该模型将骨单元所受的外部载荷与骨小管内部液体的压力、流速、流量和切应力联系起来,并进一步可以研究其力传导与力电传导机制.骨小管模型的建立分别基于中空和考虑哈弗液体的骨单元模型,并考虑了骨单元外壁的弹性约束和刚性位移约束两种边界条件.最终得到骨单元在外部轴向载荷作用下,骨小管内部液体的流量及流体切应力的解析解.结果表明:骨小管中的液体流量与流体切应力都正比于应变载荷幅值和频率,并由载荷的应变率决定.因此应变率可以作为控制流量和流体切应力的一种生理载荷因素.流量随着骨小管半径的增大而非线性增大,而流体切应力则随着骨小管半径的增大而线性增大.此外,在相同的载荷下,含哈弗液体的骨单元的模型中,骨小管中液体的流量和切应力均大于中空骨单元模型.  相似文献   

12.
The poroelastic problem associated with a hollow cylinder under cyclic loading is solved. Both fluid and solid phases are supposed compressible. Solid matrix is modeled as an elastic transverse isotropic material. An explicit close-form solution for the steady state is obtained. This cylinder is considered as a model for an osteon, the basic unit of cortical bone. The fluid flow distribution as a function of poroelastic properties and cyclic loading is discussed, as this could influence bone remodeling. To cite this article: A. Rémond, S. Naili, C. R. Mecanique 332 (2004).  相似文献   

13.
The influence of the loading conditions on the trabecular architecture of a femur is investigated by using topology optimization methods. The response of the bone to physiological loads results in changes of the internal architecture of bone, reflected by a modification of internal effective density and mechanical properties. The homogenization based optimization model is developed for predicting optimal bone density distribution, wherein bone tissue is assumed to be a composite material consisting of a mixture of material and void. The homogenization scheme treats the geometric parameters of the microstructures and their orientation as design variables and homogenizes the properties in that microstructure, which is generally anisotropic. The penalization of the optimal material density then leads to a classical optimal structure which consists of regions with bone material and regions without bone material. The IMD (Isotropic Material Design) approach is next applied to determine the optimal elasticity tensor in terms of the bulk and shear moduli for the present loading applied to the femoral bone sample. IMD is able to provide both the external shape and topology together with the optimal layout of the isotropic moduli. Both topology optimization methods appear to be complementary. Simulations of the internal bone architecture of the human proximal femur results in a density distribution pattern with good consistency with that of the real bone.  相似文献   

14.
Among the various important characteristics of biological tissues is their ability to grow and remodel. It is well-known that one of the primary triggers behind the growth and remodeling process is changes in the mechanical environment, for instance changes in stress, strain, etc. These mechanisms of mechanotransduction are the driving force behind many changes in structure and function including growth and remodeling. The purpose of this article is to formulate better constitutive equations for the stress in tissues with multiple constituents undergoing growth and remodeling. This is a very complex problem and is of tremendous importance. Here, we do the modeling from a mechanics point of view, utilizing the theory of natural configurations coupled with population dynamics to accurately model the production and removal of the different constituents that comprise the tissue. This is accomplished by deriving a generalized McKendrick equation for growth and remodeling and has the advantage of directly including the age distribution of constituents into the model. The population distribution function is then used to determine the stress in the tissue.  相似文献   

15.
The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analytical poroelastic model for the AC under laboratorial mechanical testing is developed. The solutions of interstitial fluid pressure and velocity are obtained. The results show the following facts. (i) Both the pressure and fluid velocity amplitudes are proportional to the strain loading amplitude. (ii) Both the amplitudes of pore fluid pressure and velocity in the AC depend more on the loading amplitude than on the frequency. Thus, in order to obtain the considerable fluid stimulus for the AC cell responses, the most effective way is to increase the loading amplitude rather than the frequency. (iii) Both the interstitial fluid pressure and velocity are strongly affected by permeability variations. This model can be used in experimental tests of the parameters of AC or other poroelastic materials, and in research of mechanotransduction and injury mechanism involved interstitial fluid flow.  相似文献   

16.
17.
18.
廖秋林  李晓  李守定 《力学学报》2010,18(3):385-391
基于土力学与岩石力学的实验室力学试验原理与方法,本文首先探索了土石混合体重塑样的制备、压密特性等问题,初步给出土石混合体重塑样制备的一个标准流程,并揭示了土石混合体的压密特性与机制,即土石混合体压密主要是土体的压密,但块石直接影响其压密效果,并指出本次试验土石混合体50锤次可达到的最佳压密效果,而压密机制随含石量增加而有所变化。运用高精度岩石试验机,首次进行了土石混合体的单轴压缩试验。试验表明,在无侧限条件下块石与土体无胶结,导致了试样实际承载面积减小,使其抗压强度与弹模反而低于土体; 而土石混合体中块石形成骨架结构的力学响应是土石混合体的一个重要的力学特性。  相似文献   

19.
Grobbel  M. R.  Lee  L. C.  Watts  S. W.  Fink  G. D.  Roccabianca  S. 《Experimental Mechanics》2021,61(1):191-201
Background

Hypertension drives myocardial remodeling, leading to changes in structure, composition and mechanical behavior, including residual stress, which are linked to heart disease progression in a gender-specific manner. Emerging therapies are also targeting constituent-specific pathological features. All previous studies, however, have characterized remodeling in the intact tissue, rather than isolated tissue constituents, and did not include sex as a biological variable.

Objective

In this study we first identified the contribution of collagen fiber network and myocytes to the myocardial residual stress/strain in Dahl-Salt sensitive rats fed with high fat diet. Then, we quantified the effect of hypertension on the remodeling of the left ventricle (LV), as well as the existence of sex-specific remodeling features.

Methods

We performed mechanical tests (opening angle, ring-test) and histological analysis on isolated constituents and intact tissue of the LV. Based on the measurements from the tests, we performed a stress analysis to evaluate the residual stress distribution. Statistical analysis was performed to identify the effects of constituent isolation, elevated blood pressure, and sex of the animal on the experimental measurements and modeling results.

Results

Hypertension leads to reduced residual stress/strain in the intact tissue, isolated collagen fibers, and isolated myocytes in male and female rats. Collagen remains the largest contributor to myocardial residual stress in both normotensive and hypertensive animals. We identified sex-differences in both hypertensive and normotensive animals.

Conclusions

We observed both constituent- and sex-specific remodeling features in the LV of an animal model of hypertension.

  相似文献   

20.
Orthotropic bone remodeling: case of plane stresses   总被引:1,自引:0,他引:1  
Cancellous bone is constituted by a porous solid matrix filled with fluid. Matrix microstructure gives bone most of its mechanical strength properties. In our macroscopic approach, bone is seen as a continuous medium with a local (at our scale) time-dependent linearly elastic orthotropic behavior. Remodeling consists, by matrix material apposition or resorption, in microstructure modifications in order to optimize its mechanical characteristics. The proposed model is built on a time iterative procedure where the compliance tensor evolves such that, depending on the applied stresses, principal strains tend to fall within an admissible domain. The suggested remodeling laws in this work modify the elasticity “constants” as well as the orthotropy directions. The first results presented here correspond to the plane stresses case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号