首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nutrients on L(+)-lactic acid production from glucose was investigated using Rhizopus oryzae ATCC 523 11. From the shake-flask experiments, the optimal medium composition was defined for improved lactic-acid production. In order to enhance lactic-acid production rate and product yield, controlled aeration in a bubble column was conducted under optimal conditions. Results showed a maximum lactic-acid production rate of 2.58 g/L/h was obtained with an initial glucose concentration of 94 g/L. Finallactic-acid concentration of 83 g/L was achieved after 32 h of fermentation with a weight of 0.88 glactic acid/g glucose consumed.  相似文献   

2.
This study documents the similar pH-dependent shift in pyruvate metabolism exhibited byZymomonas mobilis ATCC 29191 and ATCC 39676 in response to controlled changes in their steady-state growth environment. The usual high degree of ethanol selectivity associated with glucose fermentation by Z.mobilis is associated with conditions that promote rapid and robust growth, with about 95% of the substrate (5% w/v glucose) being converted to ethanol and CO2, and the remaining 5% being used for the synthesis of cell mass. Conditions that promote energetic uncoupling cause the conversion efficiency to increase to 98% as a result of the reduction in growth yield (cell mass production). Under conditions of glucose-limited growth in a chemostat, with the pH controlled at 6.0, the conversion efficiency was observed to decrease from 95% at a specific growth rate of 0.2/h to only 80% at 0.042/h. The decrease in ethanol yield was solely attributable to the pH-dependent shift in pyruvate metabolism, resulting in the production of lactic acid as a fermentation byproduct. At a dilution rate (D) of 0.042/h, decreasing from pH 6.0 to 5.5 resulted in a decrease in lactic acid from 10.8 to 7.5 g/L. Lactic acid synthesis depended on the presence of yeast extract (YE) or tryptone in the 5% (w/v) glucose-mineral salts medium. At D = 0.15/h, reduction in the level of YE from 3 to 1 g/L caused a threefold decrease in the steady-state concentration of lactic acid at pH 6. No lactic acid was produced with the same mineral salts medium, with ammonium chloride as the sole source of assimilable nitrogen. With the defined salts medium, the conversion efficiency was 98% of theoretical maximum. When chemostat cultures were used as seed for pH-stat batch fermentations, the amount of lactic acid produced correlated well with the activity of the chemostat culture; however, the mechanism of this prolonged induction  相似文献   

3.
Phytases act on phytic acid, an antinutrient factor present in animal feeds, and release inorganic phosphate. We optimized the production parameters for phytase production using Thermoascus aurantiacus (TUB F 43), a thermophilic fungal culture, by submerged fermentation. A semisynthetic medium containing glucose, starch, peptone, and minerals supplemented with 3.75% (w/v) wheat bran particles was found to be the best production medium among the various combinations tried. Further supplementation of this medium with surfactants such as Tween-20 and Tween-80 considerably enhanced the enzyme yield. A maximum phytase activity (468.22 U/mL) was obtained using this production medium containing 2% (v/v) Tween-20 after 72 h of fermentation at 45°C in shake-flask cultures with a rotation of 150 rpm. Herein we present details of a few of the process parameter optimizations. The phytase enzyme was found to be thermostable, and the optimal temperature for phytase activity was found to be 55°C. However, 80% of the activity still remained when the temperature was shifted to 70°C.  相似文献   

4.
Four commercial strains and two mutants of the yeast species Yarrowia lipolytica were screened using batch fermentation. Strain Y. lipolytica A-101-1.14 (induced with UV irradiation) was found to be the most suitable for citric acid production from glucose hydrol (39.9% glucose and 2.1% other sugars), a byproduct of glucose production from potato starch. The specific rate of total citric and isocitric acid production was 0.138 g/g.h, the yield on consumed glucose 0.93 g/g, and the productivity achieved was as high as 1.25 g/L.h. All of the tested yeast strains were able to utilize only the glucose from the glucose hydrol medium. Thus, some residual higher oligosaccharides remained in the process effluent.  相似文献   

5.
The hydrolysis process on corncob residue was catalyzed synergetically by the cellulase from Trichoderma reesei and the immobilized cellobiase. The feedback inhibition to cellulase reaction caused by the accumulation of cellobiose was eliminated efficiently. The hydrolysis yield of corncob residue was 82.5%, and the percentage of glucose in the reducing sugar reached 88.2%. The glucose in the cellulosic hydrolysate could be converted into lactic acid effectively by the immobilized cells of Lactobacillus delbrueckii. When the enzymatic hydrolysis of cellulose and the fermentation of lactic acid were coupled together, no glucose was accumulated in the reaction system, and the feedback inhibition caused by glucose was also eliminated. Under the batch process of synergetic hydrolysis and lactic acid fermentation with 100 g/L of cellulosic substrate, the conversion efficiency of lactic acid from cellulose and the productivity of lactic acid reached 92.4% and 0.938 g/(L·h), respectively. By using a fed-batch technique, the total concentration of cellulosic substrate and lactic acid in the synergetic process increased to 200 and 107.5 g/L, respectively, whereas the dosage of cellulase reduced from 20 to 15 IU/g of substrate in the batch process. The results of the bioconversion of renewable cellulosic resources were significant.  相似文献   

6.
For optimum fermentation, fermenting xylose into acetic acid by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. Exposed to a mixture of glucose and xylose, it preferentially consumesxylose over glucose. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5g/L of yeast extract as the nitrogen source results in a maximum acetate concentration of 15.2 g/L and yield of 0.76 g of acid/g of xylose. Corn steep liquor (CLS) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose, and glucose from a mixture of sugars in batch fermentation. Arabinose, mannose, and galactose are consumed only slightly. This organism loses viability on fed-batch operation, even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, d-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.  相似文献   

7.
In pH-controlled batch fermentations with pure sugar synthetic hardwood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xyloseutilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory's first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion wasmarkellyslower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continous ferm entation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum provess ethanol yield at D=0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L·h). With 0.35% (w/v) acetic acid in the medium, the process yield at D=0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L·h). Under the same operating conditions, rec Zm Zm 4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antiboitic resistance genes makes the chromosomal integrant C25 more com patible with current regulatory specifications for biocatalysts in large-scale commercial operations.  相似文献   

8.
Studies were carried out on α-amylase production with immobilized cells of twoBacillus strains. High yields of thermostable αamylases were obtained byBacillus licheniformis 44MB82-G, resistant to glucose catabolite repression and a thermophileBacillus brevis 174, after repeated batch cultivation (270–600 h) of the immobilized biocatalysts. Various cell immobilization techniques were compared, including entrapment in gel matrices (Ca-alginate,x-carrageenan, agar, and their combinations with polyethylene oxide), adsorption on cut disks of polymerized polyethylene oxide, and fixation on formaldehyde activated acrylonitrile-acrylamide membranes. The optimal immobilization parameters (gel and biocatalyst concentration, initial cell quantity) were determined. Among the gels and supports tested, agar,x-carrageenan, agar/polyethylene oxide gels, and the membranes were found to be suitable for immobilization and biocatalysts with high operational stabilities were obtained. An enzyme yield of 2750 U/mL culture medium was reached in the fifth repeated batch run with membrane-immobilizedBacillus licheniformis cells. This activity represented 176% of the corresponding yield obtained in batch fermentation with free cells. Higher amylase yields than the activity of the control were reached in all experiments and repeated batch runs with immobilizedBacillus brevis cells.  相似文献   

9.

In the production of ethanol from lignocellulosic biomass, the hydrolysis of the acetylated pentosans in hemicellulose during pretreatment produces acetic acid in the prehydrolysate. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process that uses a proprietary metabolically engineered strain ofZymomonas mobilis that can coferment glucose and xylose. Acetic acid toxicity represents a major limitation to bioconversion, and cost-effective means of reducing the inhibitory effects of acetic acid represent an opportunity for significant increased productivity and reduced cost of producing fermentation fuel ethanol from biomass. In this study, the fermentation performance of recombinant Z.mobilis 39676:pZB4L, using a synthetic hardwood prehydrolysate containing 1% (w/v) yeast extract, 0.2% KH2PO4, 4% (w/v) xylose, and 0.8% (w/v) glucose, with varying amounts of acetic acid was examine. To minimize the concentration of the inhibitory undissociated form of acetic acid, the pH was controlled at 6.0. The final cell mass concentration decreased linearly with increasing level of acetic acid over the range 0-0.75% (w/v), with a 50% reduction at about 0.5% (w/v) acetic acid. The conversion efficiency was relatively unaffected, decreasing from 98 to 92%. In the absence of acetic acid, batch fermentations were complete at 24 h. In a batch fermentation with 0.75% (w/v) acetic acid, about two-thirds of the xylose was not metabolized after 48 h. In batch fermentations with 0.75% (w/v) acetic acid, increasing the initial glucose concentration did not have an enhancing effect on the rate of xylose fermentation. However, nearly complete xylose fermentation was achieved in 48 h when the bioreactor was fed glucose. In the fed-batch system, the rate of glucose feeding (0.5 g/h) was designed to simulate the rate of cellulolytic digestion that had been observed in a modeled SSCF process with recombinant Zymomonas. In the absence of acetic acid, this rate of glucose feeding did not inhibit xylose utilization. It is concluded that the inhibitory effect of acetic acid on xylose utilization in the SSCF biomass-to-ethanol process will be partially ameliorated because of the simultaneous saccharification of the cellulose.

  相似文献   

10.
The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.  相似文献   

11.
Using the simultaneoussaccharification and fermentation (SSF) technique, pulp mill solid waste cellulose was converted into glucose using cellulase enzyme and glucose into lacticacid using NRRL B445. SSF experiments were conducted at various pH levels, temperatures, and nutrient concentrations, and the lactic acid yield ranged from 86 to 97%. The depletion of xylose in SSF was further investigated by inoculating NRRL B445 into a xylose-only medium. On prolonged incubation, depletion of xylose with lactic acid production was observed. An experimental procedure with a nonglucose medium was developed to eliminate the lag phase. From xylose fermentation, Lactobacillus delbrueckii yielded 88–92% lactic acid and 2–12% acetic acid.  相似文献   

12.
Two distinctive forms of growth (mycelial filamentous and mycelial pellets) ofRhizopus oryzae were obtained by manipulating the initial pH of the medium with the controlled addition of CaCO3 in a bubble fermenter. In the presence of CaCO3, diffused filamentous growth was obtained when the initial pH of the substrate was 5.5. In the absence of CaCO3, mycelial pellet growth was obtained when the initial pH was 2.0. The fermentation study indicated that the mycelial growth has a shorter lag period before the onset of acid formation. Both physical forms of growth ofRhizopus exhibited a high yield of L-lactic acid in the bubble fermenter when the initial glucose concentration exceeded 70 g/L. A final lactic acid concentration of 62 g/L was produced by the filamentous form ofRhizopus from 78 g/L glucose after 27 h. This showed a weight yield of 80% of glucose consumed, with an average specific productivity of 1.46 g/h/g. Similarly, the pellet form ofRhizopus produced a final lactic acid concentration of 66 g/L from 76 g/L glucose after 43 h, with a weight yield of 86% and an average specific productivity of 1.53 g/h/g.  相似文献   

13.
Substrate selectivity of Gluconobacter oxydans (ATCC 9937) for 2,5-diketo-d-gluconic acid (2,5-DKG) production was investigated with glucose, gluconic acid, and gluconolactone in different concentrations using a resting-cell system. The results show that gluconic acid was utilized favorably by G. oxydans as substrate to produce 2,5-DKG. The strain was coupled with glucose dehydrogenase (GDH) and 2,5-DKG reductase for synthesis of 2-keto-l-gulonic acid (2-KLG), a direct precursor of l-ascorbic acid, from glucose. NADP and NADPH were regenerated between GDH and 2,5-DKG reductase. The mole yield of 2-KLG of this multienzyme system was 16.8%. There are three advantages for using the resting cells of G. oxydans to connect GDH with 2,5-DKG reductase for production of 2-KLG: gluconate produced by GDH may immediately be transformed into 2,5-DKG so that a series of problems generally caused by the accumulation of gluconate would be avoided; 2,5-DKG is supplied directly and continuously for 2,5-DKG reductase, so it is unnecessary to take special measures to deal with this unstable substrate as it was in Sonoyama’s tandem fermentation process; and NADP(H) was regenerated within the system without any other components or systems.  相似文献   

14.
The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L·h]) after 48 h of fermentation.  相似文献   

15.
This study investigated the influence of osmotic stress on succinic acid production by Actinobacillus succinogenes NJ113. Both cell growth and succinic acid production were inhibited with the increase in osmotic stress of the medium. The use of three different osmoprotectants in the production of succinic acid was studied in order to decrease the inhibitory effects of osmotic stress during fermentation. Results indicated that proline offers optimal osmoprotection in the production of succinic acid by A. succinogenes NJ113. In tests of batch fermentation, the maximum cell concentration was observed to be 5.36 g DCW/L after the addition of 25 mmol/L proline to the fermentation medium. The cell concentration was 24% higher than that noted for the control. A total quantity of 56.2 g/L of succinic acid was produced, with a production rate of 1 g/L per hour, after 56 h of fermentation. The concentration and productivity of succinic acid was observed to be increased by 22.2% and 22%, respectively, as compared with the control. The specific activity levels of key enzymes in the metabolic network was noted to be higher following the addition of proline, particularly in the later stages of fermentation. This method of enhancing succinic acid production by the addition of an osmoprotectant may potentially provide an alternative approach for enhanced production of other organic acids.  相似文献   

16.
Fermentation kinetics of ethanol production from glucose, xylose, and their mixtures using a recombinant Saccharomyces 1400 (pLNH33) are reported. Single-substrate kinetics indicate that the specific growth rate of the yeast and the specific ethanol productivity on glucose as the substrate was greater than on xylose as a substrate. Ethanol yields from glucose and xylose fermentation were typically 95 and 80% of the theoretical yield, respectively. The effect of ethanol inhibition is more pronounced for xylose fermentation than for glucose fermentation. Studies on glucose-xylose mixtures indicate that the recombinant yeast co-ferments glucose and xylose. Fermentation of a 52.8 g/L glucose and 56.3 g/L xylose mixture gave an ethanol concentration of 47.9 g/L after 36 h. Based on a theoretical yield of 0.51 g ethanol/g sugars, the ethanol yield from this experiment (for data up to 24 h) was calculated to be 0.46 g ethanol/g sugar or 90% of the theoretical yield. The specific growth rate of the yeast on glucose-xylose mixtures was found to lie between the specific growth rate on glucose and the specific growth rate on xylose. Kinetic studies were used to develop a fermentation model incorporating the effects of substrate inhibition, product inhibition, and inoculum size. Good agreements were obtained between model predictions and experimental data from batch fermentation of glucose, xylose, and their mixtures.  相似文献   

17.
Two biotechnological systems were developed for sucrose conversion into levan and ethanol withZymomonas mobilis, ensuring a 66.7% transfer of substrate carbon in a batch and 61% carbon transfer in a continuous culture. The effect of glucose, ethanol, and medium pH on sucrose conversion byZ. mobilis was studied. The addition of ethanol to the fermentation medium, in the final conc. of 100 g/L, uncoupled levan synthesis from ethanol fermentation. For a continuous culture, the most efficient conversion of substrate carbon into levan was reached at pH 4.8, giving 64.2 g/L levan, with the levan yield of 0.22 g/g and the productivity of 3.2 g/L/h.  相似文献   

18.
Effect of environmental factors and carbohydrate on gellan gum production   总被引:3,自引:0,他引:3  
Submerged culture fermentation studies were carried out in batch mode for optimizing the environmental parameters and carbon source requirement by Pseudomonas elodea for the production of gellan gum. The maximum production of gellan gum was obtained with 16-h-old culture and 8% inoculum at 30°C and pH 7.0 after 52 h of incubation (6.0 g/L). Of the various carbon sources tested, 2% sucrose, glucose, and soluble starch yielded considerably high amounts of gellan. Studies on the concentration of various carbohydrates on gellan gum production indicated that the optimum concentration of glucose and starch was 3%, whereas for sucrose it was 4%. The addition of glucose in the medium above 3% had a detrimental effect on gellan yield. The investigation of intermediate two-step addition of glucose under identical conditions of fermentation showed an enhanced production of gellan (8.12 g/L) as compared with the control (6.0 g/L). To optimize the recovery of gellan from fermented broth, different solvents were tested for precipitation of gellan gum. Among the various solvents tested, tetrahydrofuran gave better recovery of gellan (82%) as compared with the conventional solvent isopropanol (49%).  相似文献   

19.
This work represents a continuation of our investigation into environmental conditions that promote lactic acid synthesis by Zymomonas mobilis. The characteristic near theoretical yield of ethanol from glucose by Z. mobilis can be compromised by the synthesis of d- and l-lactic acid. The production of lactic acid is exacerbated by the following conditions: pH 6.0, yeast extract, and reduced growth rate. At a specific growth rate of 0.048/h, the average yield of dl-lactate from glucose in a yeast extract-based medium at pH 6.0 was 0.15 g/g. This represents a reduction in ethanol yield of about 10% relative to the yield at a growth rate of 0.15/h. Very little lactic acid was produced at pH 5.0 or using a defined salts medium (without yeast extract) Under permissive and comparable culture conditions, a tetracycline-resistant, d-ldh negative mutant produced about 50% less lactic acid than its parent strain Zm ATCC 39676. d-lactic acid was detected in the cell-free spent fermentation medium of the mutant, but this could be owing to the presence of a racemase enzyme. Under the steady-state growth conditions provided by the chemostat, the specific rate of glucose consumption was altered at a constant growth rate of 0.075/h. Shifting from glucose-limited to nitrogen-limited growth, or increasing the temperature, caused an increase in the specific rate of glucose catabolism. There was good correlation between an increase in glycolytic flux and a decrease in lactic acid yield from glucose. This study points to a mechanistic link between the glycolytic flux and the control of end-product glucose metabolism. Implications of reduced glycolytic flux in pentose-fermenting recombinant Z. mobilis strains, relative to increased byproduct synthesis, is discussed.  相似文献   

20.
The genusPropionibacterium acidipropionici was grown under pH-controlled batch fermentation conditions for the production of acetic and propionic acids using 19.1 g/L glucose as a carbon source. The optimum pH range was found to be between 5.5 and 6.5. Bacterial metabolism and fermentation pathways were altered at pH values outside this range. Lactic acid was produced as a key intermediate, with the final acetic and propionic acid production entirely dependent on the cell's ability to metabolize the lactic acid. Most of the glucose in the medium was consumed in less than 20 h of fermentation and converted to lactic acid. Batch fermentation at pH 6 showed that lactic acid was completely utilized to produce 8.5 g/L propionic acid and 5.7 g/L acetic acid. However, the bacteria were unable to metabolize lactic acid at pH 7, resulting in 0.7 g/L propionic acid and 7.0 g/L acetic acid in the fermenter. A kinetic study of batch fermentation at pH 6 showed two distinct growth phases during the fermentation. Most of the cell growth was achieved in the exponential growth stage when glucose was consumed as a main substrate. A nonexponential growth stage was observed when lactic acid was utilized as a carbon source, producing propionic and acetic acids as secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号