首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attenuated total reflectance infrared (ATR-IR) spectroscopy was employed to quantitatively evaluate the dissociation states (di-cationic, cationic, zwitterionic, and anionic) of lysine adsorbed on amorphous silica. To determine the relationship between the ATR-IR spectra and each dissociation state, we first measured pH-induced spectral changes of dissolved lysine and correlated these changes with the thermodynamically calculated dissociation states of lysine. This procedure yielded calibration curves with good linearity; we used these curves for the quantitative analysis of adsorbed lysine. Our analysis revealed that 81+/-5% of the lysine adsorbed on amorphous silica was present in a cationic state and 19+/-5% was in a zwitterionic state; these percentages remained mostly unchanged over the whole range of pH values tested (pH = 7.1-9.8). We interpret the values obtained to indicate that lysine adsorption is mainly driven by electrostatic interaction with the negatively charged silica surface (SiO(-)...Lys(+), SiO(-)...Lys(+/-)).  相似文献   

2.
The partial molar volumes, , and partial molar heat capacities, , at infinite dilution have been determined for the compounds N-acetylasparaginamide, N-acetylglutaminamide, N-acetyltyrosinamide, and N-acetyllysinamide monohydrochloride in aqueous solution at T = (288.15, 298.15, 313.15, and 328.15) K. These results, along with the literature data for the compound N-acetylglycinamide, have been used to calculate the amino acid side-chain contributions to the thermodynamic properties. These side-chain contributions are compared with those obtained using small peptides as side-chain model compounds.  相似文献   

3.
We have calculated the charge transfer (CT) between the group of DNA and the lysine (Lys) and arginine (Arg) positive side chains of histones in presence of water and K+ ions. The calculations were performed at the HF + MP2 level, using the TZVP basis set. The calculations were corrected for basis set superposition error and besides Mulliken’s population analysis we have introduced the – for charged systems more reliable – natural population analysis. The results show that the bare -Lys and the -Arg interactions become weaker, mainly, due to the presence of the K+ ion. We have found 0.067e CT for Lys and 0.050e for Arg.  相似文献   

4.
We present DFT calculations for adsorption of the first row of transition metal atoms on a MgO(1 0 0) surface and on a surface exhibiting defects. Some atoms exhibit a high adsorption energy on the defect (e.g. Co, Ni and Cu), but others (Ca, Sc) rather adsorb on a clean surface and another set is indifferent to the presence of defect. The adsorption becomes energetically unfavorable when the σ anti-bonding orbitals become populated; this is worse on a defective surface than on a terrace. The π back-donation to the surface contributes to favor the adsorption on the center.  相似文献   

5.
In this work, the adsorption of tyrosinase on ZnO nanorods and its electrocatalytic behaviors were investigated. The mushroom tyrosinase with low isoelectric point was expected to adhere on the positively charged surface of ZnO nanorods by electrostatic attraction in a neutral solution. Scanning electron microscope images and spectroscopic analysis demonstrated the adsorption of tyrosinase on ZnO nanorods and the adsorbed tyrosinase remain its bioactivity to a large extent. In the presence of tyrosinase, a roughly and cyathiform of nanosized ZnO films was obtained. This open, three-dimensioned ramiform structure made the move through and exchange the electron with GCE more easily, and thus accelerating the electron transfer between electroactive and GCE. The adsorbed tyrosinase could catalyze the oxidation of phenol and catechol. The linear concentration ranges were from 0.02 to 0.1 mM and 0.01 to 0.4 mM, for phenol and catechol, respectively. The apparent Michaelis-menten constant , a reflection of the enzymatic affinity, was 0.24 mM for phenol and 1.75 mM for catechol, which suggests a large affinity to phenolic compound. The proposed methods presented a way for further studies of the immobilization and electrochemistry of proteins on nanostructured materials.  相似文献   

6.
The lithium-doped carbon clusters LiCn, , and (n = 1–10) have been investigated systemically with density functional theory (DFT) method at the B3LYP/6-311+G* level. According to the total energies of different kinds of isomers, the LiCn, , and (n = 1–10) clusters have Li-terminated linear ground states structures, except for LiC2, LiC3, , and (n = 4–6). The incremental binding energies are evaluated to elucidate the stabilities of the clusters with different numbers of carbon atoms for neutral molecules, cations, and anions, respectively. Clear even–odd alternation effects are observed for the stability of the cationic clusters and anionic clusters, while for neutral LiCn clusters the alternation effect is less pronounced. Similarly, the ionization potentials and electron affinities of LiCn also express an obvious parity alternation. In addition, the most favorable dissociation channels are acquired according to the fragmentation energies accompanying various pathways.  相似文献   

7.
8.
Electroreduction kinetics of to anions at chemically etched (CHE) and electrochemically polished (EP) Bi(1 1 1) electrodes has been studied using rotating disc electrode method. The surface nanostructure of CHE Bi(1 1 1) and EP Bi(1 1 1) electrodes has been studied by in situ STM and the very different values of root mean squared roughness (Rms) have been obtained (1000 times higher for CHE Bi(1 1 1) (Rms  143 nm) than for EP Bi(1 1 1) (Rms  0.145 nm)). The influence of the nanoroughness of CHE Bi(1 1 1) on the current density, heterogeneous reaction rate constant and corrected Tafel plots (cTp) has been demonstrated. For CHE Bi(1 1 1) the more pronounced inhibition of electroreduction reaction at moderate negative surface charge density has been observed in comparison with EP Bi(1 1 1), caused by the differences in surface charge density and also in diffuse layer ψ0 potential drop values at crystallographically different homogeneous regions (planes) exposed at the surface of the macroheterogeneous polycrystalline CHE Bi(1 1 1) surface. The very low apparent transfer coefficient αapp obtained indicates the nearly activationless charge transfer mechanism for electroreduction at the CHE Bi(1 1 1) electrode similarly to EP Bi(1 1 1). However, αapp only very weakly depends on Rms for the Bi electrodes at high negative surface charge densities where the values of ψ0 potential are nearly equal for different planes at fixed electrode potential. At very high negative surface charge densities the cationic catalysis through the adsorbed ion pairs is possible.  相似文献   

9.
The electronic structure of the ground state of has been investigated using relativistically-corrected CCSD(T) in conjunction with ANO-RCC (Mg) and aug-cc-pVQZ (H) basis sets. The molecular potential energy surface possessed minima corresponding to both 1A1 and equilibrium structures (with a 1Σ+ transition state). The 1A1 structure possessed Re and θe values of 2.0297 Å and of 22.09°, respectively. The higher-energy structure exhibited an Re value of 2.1658 Å. Property surfaces were constructed to calculate rovibrational energies and spectral line intensities for the ground states of , (1A′) MgHD2+ and . For the vibration ground state of , the vibration-averaged Re and θe values were calculated to be 2.0209 Å and 22.53°, respectively. The A, B and C rotational constants were calculated to be 58.0, 2.21 and 2.11 cm−1, respectively.  相似文献   

10.
The photoabsorption spectrum of but-2-yne in the range 5.5–11 eV (225–110 nm) has been recorded using a synchrotron radiation source. The spectrum is dominated by three d-type Rydberg series, converging to the first ionisation energy (IE) (π−1, 9.562 eV). Origins of the π3d members are 7.841, 7.977 and 8.018 eV, respectively. Transitions of low intensity, arising from excitation of the π3s state (origin, 6.35 eV) and two π3p Rydberg states (7.38 and 7.51 eV, respectively) have also been identified in the spectrum. Near-threshold electron energy-loss spectra reveal valence excited triplet states at about 5.2 and 5.8 eV, respectively.Electronic excitation energies for valence and Rydberg-type states have been computed using ab initio multi-reference multi-root CI methods. These studies used a triple zeta + polarisation basis set, augmented by diffuse (Rydberg) orbitals, to generate the theoretical singlet and triplet energy manifolds. The correlation of theory and experiment shows the nature of the more intense Rydberg state types, and identification of the main valence and Rydberg bands. Calculated energies for Rydberg states are close to those expected, and there is generally a good correlation between the theoretical and experimental envelopes. It was possible to generate singlet Rydberg states which relate to the 5-lowest IEs of but-2-yne; furthermore, the separation of these sequences shows that the IE order (under D3h symmetry) is: , also supported by direct calculation of the IEs by CI.The lowest valence singlet states are ππ*, optically forbidden, and calculated to lie near 7.3 and 7.6 eV. The states which contribute strongly to the observed spectrum are πσ* near 7.9 eV having excitation, followed by several ππ* and πσ* states between 10.0 and 10.5 eV; an 1E′ antisymmetric combination(2e′2e″ − 2e′2e″) is by far the strongest in intensity. A further group of symmetry-allowed valence states are calculated to lie near 12.3 and 12.9 eV. The two lowest triplet states, both of E′ symmetry (ππ*), have vertical excitation energies of 5.7 and 6.2 eV, but are strongly bent with a trans-CCCC unit (CS and C2h). The theoretical work confirms that, on intensity grounds, valence excited states do not contribute significantly to the spectrum. CI calculations of the ionic states give the ionisation energy sequence (D3h): . Adiabatic structures for the first cation, two triplets, and a singlet (C2h) were obtained; these show shortening of C–C, and lengthening of CC, in a trans-CCCC, as is found with ethyne.  相似文献   

11.
A systemic density functional theory study of the tin-doped carbon clusters has been carried out using B3LYP method with TZP+ basis set. For each species, the electronic states, relative energies and geometries of various isomers are reported. Except for smaller SnC2 and the largest , the Sn-terminated linear or quasi-linear isomer is the most stable structure for clusters. The electronic ground state is alternate between 3Σ (for n-odd member) and 1Σ (for the n-even member) for linear SnCn and invariably 2Π for linear and , except for SnC/SnC+/SnC,, and . The incremental binding energy diagrams show that strong even–odd alternations in the cluster stability exist for both neutral SnCn and anionic , with their n-even members being much more stable than the corresponding odd n − 1 and n + 1 ones, while for cationic , the alternation effect is less pronounced. These parity effects also reflect in the ionization potential and electron affinity curves. By comparing with the fragmentation energies accompanying various channels, the most favorable dissociation channel for each kind of the clusters are given. All these results are very similar to those obtained previously for the clusters.  相似文献   

12.
The reduction of dioxygen in base was examined on several carbon electrode surfaces, particularly polished and modified glassy carbon (GC). Electrochemical pretreatment, fracturing, and vacuum heat treatment shifted the reduction peak positive, while adsorption of several covalent and physisorbed organic compounds shifted it negative. A reverse wave for O2 oxidation was observed in tetraethylammonium hydroxide electrolyte, and on GC surfaces preadsorbed with Co(II) phthalocyanine. An isotope effect was observed when H2O + KOH and D2O + KOD electrolytes were compared, with the largest effect observed on surfaces exhibiting the most positive reduction peak potential. The results indicate involvement of proton transfer in the rate limiting step of reduction, and a strong dependence of the electron transfer rate on the carbon surface condition. The results support a mechanism involving adsorption of O2 and associated enhancement of proton transfer from water to O2. Activation of the dioxygen reduction by surface pretreatment is attributed to increasing the concentration of adsorbed O2.  相似文献   

13.
This research attempted to study the adsorption of Sb(III) and Sb(V) on bentonite using batch experiments. The effects of reaction time, temperature, initial Sb concentration, and competitive anions at different concentrations on the adsorption of Sb(III) and Sb(V) were investigated. Kinetic studies suggested that the adsorption equilibriums for both Sb(III) and Sb(V) were reached within 24 h. The desorption of Sb adsorbate on the bentonite was observed following Sb(III) adsorption, probably due to the oxidation of Sb(III) on the bentonite surface and subsequent desorption of Sb(V). In addition, oxidation of Sb(III) can occur in the solution medium also, which decreases the concentration of Sb(III) in the solution thereby driving the equilibrium in the direction of desorption from the surface. The adsorption data at three temperatures were successfully modeled using Langmuir (r2 > 0.82) and Freundlich (r2 > 0.99) isotherms. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were calculated from the temperature dependence, suggesting that the adsorption process of Sb(III) is spontaneously exothermic, while the adsorption process of Sb(V) is spontaneously endothermic. Competitive anions such as , , and hardly affected the Sb(III) adsorption on bentonite, while and could compete with for adsorption sites. The competition between and on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation of on bentonite surface.  相似文献   

14.
We employed static continuum electrostatics and multi-conformation continuum electrostatics (MCCE) methods to determine the reduction potential () of PQ-9 in a section of Photosystem II (PSII). Both methods relied on the finite difference Poisson–Boltzmann (FDPB) solution. The static method brings out a value (0.01 V) that is close to the experimental one (0.05 V), thereby demonstrating that the surrounding environment critically decides the net free energy change. The value obtained from MCCE (0.04 V) is even closer to the observed value, thereby indicating the importance of protein side-chain and proton motions in the electron transfer process. Furthermore, density functional theory-dielectric polarisable continuum model (DFT-DPCM) was employed to calculate the absolute free energy of reduction of plastoquinone-n (PQ-n, where n is the number of isoprenoid units) in N,N dimethyl formamide (DMF) solvent. The DFT-DPCM method produced reduction potential values of −0.59 and −0.65 V for PQ-1 and PQ-9, respectively. These are more or less in agreement with the experimentally reported values of −0.64 and −0.62 V, respectively.  相似文献   

15.
A careful transmission electron microscopy (TEM) investigation of an incommensurately modulated member of the (Bi1−xSrx)Fe3+O3−x/2x/2, 0.2≤x≤0.67, solid solution has been carried out. High resolution (HR) TEM imaging is used to show the presence of at least 6-fold twinning on a rather fine (5 nm) scale. The (3+1)-d superspace group symmetry is suggested to be or one of the non-centrosymmetric sub-groups thereof, namely , , and . A superspace construction is then used to propose the nature of the local compositional ordering and, hence, of the oxygen-deficient slab that intergrows with the perovskite slab to produce the observed solid solution phase. The proposed compositional superspace atomic surfaces can be used to produce model structures at any composition within the solid solution range.  相似文献   

16.
The adsorption of the paramagnetic molecules of NO and NO2 by zeolites in the alkali and alkaline earth cationic forms has been studied by EPR and reflectance spectroscopic methods. The change in the EPR spectra of adsorbed nitric oxide with increase in the degree of covering of the surface of the alkali cationic form of the zeolites, and also the nature of the change in the spectra when oxygen is adsorbed on zeolites on which NO has previously been adsorbed, indicate the existence of two types of adsorption center. At low degrees of covering of the surface, on the order of 1018 g–1, as can be judged from the EPR spectra, the adsorbed NO molecule is strongly polarized and the unpaired electron is almost completely localized on the oxygen atom. At high degrees of covering, for an appreciable proportion of the NO molecules, the bond with the surface is weaker. In this case, the EPR spectra show a hyperfine structure (HFS) with a constant which changes with change in the cation in the order Li+ Na+ K+. The replacement of the singly charged Na+ by the doubly charged Ca2+ produces a marked change in the adsorption properties of the zeolite. The adsorption of NO on CaA leads not only to polarization of the adsorbed molecule but also to transfer of the electron from the nitrogen atom to the atoms of the adsorbent; this is recorded in the EPR spectrum in the form of an F-center. On further adsorption, the NO molecules are adsorbed both on the nitrogen atom and on the oxygen atom of the first molecule; thus, NO2 and N2O are formed.  相似文献   

17.
Strontium borophosphate phosphate (Sr6BP5O20, SrBP), activated by divalent europium ions is a bluish-green phosphor emitting in a broad band with the emission peak near 480 nm. In this paper, we report the crystal structure of SrBP determined from an analysis of the X-ray diffraction pattern of a prismatic single crystal (size 60 μm×50 μm×40 μm). This crystal was chosen from undoped phosphor powder samples prepared for this purpose by solid-state reaction. SrBP is observed to crystallize in a body-centered tetragonal lattice with the lattice parameters and , the associated space group being (space group 120). Using the structural data from this study, we have also calculated its electronic structure using the augmented spherical wave method and the local density approximation (LDA). We show the ordering of the electronic states by the density of states (DOS) and the partial DOS plots. The LDA gives a direct optical band gap at the Γ point of about 5 eV. The significance of the crystal structure and associated electronic structure is discussed with respect to maintenance of this phosphor in Hg-discharge lamps.  相似文献   

18.
A novel organic–inorganic coordination polymer [CdCl3(CH3)3NH] 1 was synthesized by the reaction of CdCl2 with trimethylamine (TMA) at 170 °C for 5 days in ethanol and structurally characterized by means of X-ray single diffraction. The title compound affords a one-dimensional chain structure. It crystallizes in hexagonal system space group P6(3)/m with , , , γ=120.00°, , Z=2, , F(000)=266, Mr=277.86, , the final R=0.0420 and ωR=0.1020 for 355 observed reflections with I>2σ(I). The title compound consists of cation [(CH3)3NH]+ and anion chain , and they are combined by static attracting forces in the crystal. TG–DTA, XRD and IR data for the title compound are reported and discussed. The photoluminescent properties of the compound 1 were also investigated.  相似文献   

19.
The compound CsAgSb4S7 has been synthesized by the reaction of the elements in a Cs2S3 flux at 773 K. The compound crystallizes in a new structure type with eight formula units in space group C2/c of the monoclinic system in a cell at 153 K of dimensions , , , β=97.650(1)°, and . The structure contains two-dimensional layers separated by Cs atoms. Each layer is built from edge-sharing one-dimensional and chains. Each Ag atom is tetrahedrally coordinated to four S atoms. Each Sb3+ center is pyramidally coordinated to three S atoms to form an SbS3 group. CsAgSb4S7 is insulating with an optical band gap of 2.04 eV. Extended Hückel calculations indicate that the band gap in CsAgSb4S7 is dominated by the Sb 5s and S 3p states above and below the Fermi level.  相似文献   

20.
Cyclic voltammetry (CV), differential capacity (DC), and charge densitymeasurements have been employed to study the benzoate (BZ) adsorption at the Au(111)electrode surface. Thermodynamic analysis of charge density (M) data has beenperformed to describe the properties of the adsorbed benzoate ion. The Gibbsexcess , Gibbs energy of adsorption G, and the number of electrons flowingto the interface per adsorbed benzoate ion at a constant potential (electrosorptionvalency) and at a constant bulk concentration of the benzoate (reciprocal of theEsin—Markov coefficient) have been determined. The results demonstrate thatalthough benzoate adsorption starts at negative charge densities, it takes placepredominantly at a positively charged surface. At the most positive potentials,the surface concentration of benzoate attains a limiting value of about 7.3×10–10mol-cm–2, which is independent of the bulk benzoate concentration. This valueis consistent with packing density corresponding to a closed-packed monolayerof vertically adsorbed benzoate molecules. At negative charge densities, benzoateassumes a flat (-bonded) surface coordination. The surface coordination ofbenzoate changes, by moving from a negatively to positively charged surface.At the negatively charged surface, the electrosorption bond is quite polar. Thepolarity of the chemisorption bond is significantly reduced due either to a chargetransfer or a screening of the charge on the anion by the charge on the metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号