首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper presents an efficient pumping scheme for L-band erbium-doped fiber (EDFA) amplifier to reach high gain and low noise performance in a double-pass configuration. The main L-band amplifier is composed of two sections of EDFs. A 980 nm and a 1480 nm pump lasers are used to pump the first section of EDF bi-directionally. The generated backward C-band amplified spontaneous emission noise from this EDF is used to pump a subsequent un-pumped section of EDF. In the double-pass scheme, a narrow-band fiber Bragg grating at each channel wavelength is used to back-reflect the L-band signal to make it amplified twice by the pair of EDFs. Compared with its conventional counterpart, this new double-pass configuration provides a lower noise figure and a higher gain. The pump conversion efficiency can be improved by more than 50% in a 3-channel demonstration by using the proposed configuration.  相似文献   

2.
The paper presents an experimental investigation of the gain spectrum of an erbium-doped fiber amplifier (EDFA) considering different system configurations, which include single-pass, double-pass, and double-pass with tunable band-pass filter (TBF). The role of TBF is to suppress the undesired amplified spontaneous emission (ASE). Both co- and counter-pumping schemes are considered with a 1480 nm laser diode as the pump and a suitable tunable laser source as the signal source. The results indicate that the signal achieves an average of 14 dB higher gain in the case of double-pass amplification with the implementation of a TBF. However, the pumping scheme hardly becomes of much importance in influencing the gain characteristics.  相似文献   

3.
An experiment on gain enhancement in the long wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated using dual forward pumping scheme in double-pass system. Compared to a single-stage single-pass scheme, the small signal gain for 1580 nm signal can be improved by 13.5 dB. However, a noise figure penalty of 2.9 dB was obtained due to the backward C-band ASE from second stage and the already amplified signal from the first pass that extracting energy from the forward C-band ASE. The maximum gain improvement of 13.7 dB was obtained at a signal wavelength of 1588 nm while signal and total pump powers were fixed at -30 dBm and 92 mW, respectively.  相似文献   

4.
We propose a simple, highly sensitive fiber-optic autocollimation method for refractive-index dispersion measurement of solid-state and liquid bulk optical materials using a double-pass fiber Raman laser with Littrow-prism-tuned emission. The optical fiber is a key element of the scheme and serves simultaneously as a point laser source for the test, as a highly sensitive point receiver (or spatial filter) of the autocollimation backreflectance signal and as a medium for nonlinear frequency conversion and generation of a broadband continuum spectrum. When the Raman medium is a graded-index multimode fiber with powerful pumping (over 100 kW) using the second harmonic of a Q-switched Nd:YAG laser (λp=532nm), we obtain widely tunable (0.54-1.01 μm) generation in both the visible and near-IR ranges. The results obtained in the refractive-index dispersion measurements are fitted to the Sellmeier dispersion equation and the standard deviation of the experimental data from the analytical curve does not exceed 5x10-5.  相似文献   

5.
The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the C- and L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the double-pass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier.  相似文献   

6.
An efficient fluoride-based thulium-doped fiber amplifier (TDFA) is theoretically demonstrated using a double-pass scheme. A reflector is incorporated in the double-pass TDFA to allow double propagation of the test signal in the gain medium and thus improve the gain of the TDFA. The small signal gain improvement of more than 15 dB is obtained in the 1465 nm region. A gain as high as 42 dB is obtained in this region with 300 mW of 1050 nm pump using 20 m of thulium-doped fiber. However, a noise figure penalty of approximately 1 dB is also obtained in this wavelength region. Differential equations are solved using the Runge-Kutta method in the theoretical analysis. The theoretical result is in agreement with the experimental result.  相似文献   

7.
为了获得较窄增益带宽、较大光强的太赫兹辐射,尝试了利用TEA CO2激光器对6 W可调谐连续波CO2种子激光实行双程光放大实验,以期望获得长脉冲、高峰值功率的抽运光.通过实验,获得了大约30倍的放大系数,放大光输出功率随种子光注入功率的增加而增加,其中10 P (20)支线表现更加突出,并且被放大的激光支线半峰全宽在14 μs左右.基于这种长脉冲抽运源,建立了一种产生脉冲太赫兹的动力学模型,给出了产生太赫兹辐射的饱和抽运光强表达式,确定了抽运光的光强范围.另外, 关键词: 激光物理 长脉冲 动力学模型 太赫兹激光  相似文献   

8.
研究了L-波段超荧光在光纤中的产生机理,设计了一种带光纤圈反射器的双级双程前向输出L-波段光源结构,通过对两级采用掺铒浓度不同的光纤并优化其长度及两级泵浦光功率,实验中获得了功率高达19.86mW(12.98dBm)、中心波长为1577.421nm的L-波段(1555-1620nm)超荧光光源。实现了低浓度掺铒光纤起诱导光及改善光谱的作用,高浓度光纤为主要发光源,采用光纤圈反射器提高了泵浦光的利用效率、光源的平坦度及稳定性。同时分析了结构中各个参量对光源各方面性能的影响,对光源的设计具有指导意义。  相似文献   

9.
We demonstrate a triple-pass scheme for coherent transfer of optical frequency and the delay effect on the fiber phase noise compensation. It is theoretically proved that the delay effect consists of both fiber delay and servo delay. The delay effect confines the servo bandwidth within 1/8 and induces a residual fiber phase noise after noise compensation. For a 25-km-long fiber, the servo bandwidth is found to be around 1 k Hz, and the fiber phase noise is suppressed approaching to the theoretical limitation. The triple-pass scheme enables the simultaneous transfer of optical frequency to multiple remote users. The performance of noise compensator in the triple-pass scheme can achieve a similar level result compared with that in the double-pass scheme.  相似文献   

10.
Performance of a Bismuth-based Erbium-doped fiber amplifier is experimentally and theoretically investigated using 1480 nm pumping with double-pass scheme. In the theoretical analysis, the rate and power propagation equations are solved to examine the optimum length for the C-band operation as well as the gain and noise figure characteristics. The calculated small signal gain is 38 dB with gain variation of less than 3 dB. The measured gain is 4 dB lower due to spurious reflections which were ignored in the theoretical analysis. At input signal power of 0 dBm, a gain of 14.5 dB is obtained experimentally with gain variation of less than 1 dB within the wavelength region from 1530 to 1565 nm. The noise figure is less than 12 dB within this region.  相似文献   

11.
The performance of a high output power Erbium-Ytterbium doped fiber amplifier (EYDFA) pumped by a 927 nm laser diode are proposed and experimentally investigated. The EYDFA provides a flat gain and output power higher than 23 dBm in the wavelength region from 1545 to 1566 nm using a double-pass configuration. A broadband fiber Bragg grating is used in the double-pass EYDFA to allow a double-propagation of the test signal in the gain medium and thus improves the gain and output power characteristics of the amplifier. The maximum output power of 390 mW is obtained at the maximum 927 nm pump power of 4.1 W which translates to a power conversion efficiency of about 10%.  相似文献   

12.
An efficient erbium–ytterbium-doped fiber amplifier (EYDFA) is demonstrated by forward and backward pumping a 3 m erbium/ytterbium co-doped fibers (EYDF) in single- and double-pass configurations using a 20 mW pump. At the input signal wavelength of 1536 nm, the forward- and backward-pumped double-pass amplifiers achieved a maximum low-signal gain of 37.2 and 28.6 dB and a corresponding noise figure of 5.4 and 10.8 dB, respectively. Whereas, the forward- and backward-pumped single-pass amplifiers (at the same wavelength) achieved a maximum low-signal gain of 20.0 and 22.2 dB and a corresponding noise figure of 4.6 and 10.3 dB, respectively. The double-pass design offers an economical solution to high-efficiency and high-gain optical amplifiers.  相似文献   

13.
李晓莉  石顺祥  刘红军  王红英  赵卫 《光子学报》2007,36(12):2231-2234
以钛宝石飞秒振荡源作为种子源,在二级放大器中,采用种子光被同一束抽运光在有效非线性系数最大的平面内放大两次的双通光参量放大结构,实现高增益光参量啁啾脉冲放大.实验得到了3×107的总增益,信号光输出能量为3 mJ,能量晃动小于3%rms,此时参量荧光仅占输出总能量的1%.实验结果表明,采用这种放大系统,提高了信号光与抽运光在时域上的匹配,有效地抑制了参量放大过程中参量荧光的产生,同时提高了系统的稳定性.  相似文献   

14.
刘涛  赵永蓬  崔怀愈  刘晓琳 《物理学报》2019,68(2):25201-025201
建立了类氖氩C线69.8 nm激光的双程放大实验后反射腔结构,利用45 cm长毛细管作为放电负载得到了其双程放大输出.在相同初始实验条件下,分别测量了单程放大输出与双程放大输出的激光脉冲光强、脉冲宽度以及激光束散角.通过对比单程与双程输出实验结果,利用双程放大激光光强的计算公式,分析得到了增益持续时间大于4 ns,以及增益在毛细管径向上的分布特点.以上结果为建立谐振腔进行毛细管放电类氖氩激光的多程放大实验奠定了基础.  相似文献   

15.
Photothermal deflection spectroscopy is combined with a Sagnac interferometer to enhance the sensitivity of the absorption measurement by converting the photothermal beam deflection effect into the light intensity change by the interference effect. Because of stable light interference due to the common path, the signal intensity can be amplified without increasing the noise by extending the optical path length between a sample and a photodetector. The sensitivity is further improved by the use of focusing optics and double-pass geometry. This makes photothermal deflection spectroscopy applicable to any kind of material in the whole visible region with a xenon lamp for excitation and water or air as a deflection medium.  相似文献   

16.
《Physics letters. A》1997,232(5):340-348
A new scheme of gravitational wave antennas is proposed which due to the effect of light pressure behaves analogous to solid state antenna of the same scale. The gravitational signal in this scheme is transformed into the force acting on a mirror. The resulting mirror displacement may be detected using methods standard for the bar antennas. The scheme provides gain in resolution and allows one to beat the standard quantum limit without the use of non-classical pumping.  相似文献   

17.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

18.
Haleem  M. R.  Al-Mansoori  M. H.  Jamaludin  M. Z.  Abdullah  F.  Din  N. Md 《Laser Physics》2011,21(2):419-422
We demonstrate an efficient double-pass L-band erbium-doped fiber amplifier (EDFA) incorporating chirped fiber Bragg grating (CFBG). The amplifier structure exploits the characteristics of CFBG to reflect the amplified signal back into the gain medium, filter out the recycled forward amplified spontaneous emission and block the residual 1480 nm pump power. The amplifier configuration has high gain and low noise figures as compared to double-pass EDFA using broadband mirror. The demonstrated amplifier has gain of more than 48 dB and low noise figure of less than 4 dB at low input signal power of −40 dBm.  相似文献   

19.
We experimentally investigate the single-pumped L-band (1570–1610 nm) erbium-doped fiber amplified spontaneous emission (ASE) source in four configurations with single-pass forward, single-pass backward, double-pass forward (DPF), and double-pass backward structures. The characteristics are examined and compared in terms of the output power, mean wavelength, spectral linewidth, and pumping conversion efficiency. Among them, only DPF configuration is satisfied, and other configurations are intrinsically hard to be an L-band ASE source for applications. Such results are significantly different as compared with their corresponding C-band counterparts.  相似文献   

20.
Dispersion compensating fibers (DCF) are the most widely used technology for dispersion compensation. A DCF without Raman amplification introduces extra loss in the system, thus increasing the need for gain in the discrete amplifiers and degrading the noise performance. The idea to additionally use the DCF as a Raman gain medium was originally proposed by Hansen et al. in 1998. [1] This was quickly followed by Emori et al., who demonstrated a broadband, loss less DCF using multiple-wavelength Raman pumping. [2] DCF is a good Raman gain medium, due to a relatively high germanium doping level and a small effective area. To get sufficient gain with a reasonable pump power, a discrete Raman amplifier has to contain several kilometers of fiber, adding extra dispersion to the system that must be handled in the overall dispersion management. Dispersion compensating Raman amplifiers integrates two key functions: dispersion compensation and discrete Raman amplification into a single component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号