首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a normal space X, α (i.e. the nonempty player) having a winning strategy (resp. winning tactic) in the strong Choquet game Ch(X) played on X is equivalent to α having a winning strategy (resp. winning tactic) in the strong Choquet game played on the hyperspace CL(X) of nonempty closed subsets endowed with the Vietoris topology τ V . It is shown that for a non-normal X where α has a winning strategy (resp. winning tactic) in Ch(X), α may or may not have a winning strategy (resp. winning tactic) in the strong Choquet game played on the Vietoris hyperspace. If X is quasi-regular, then having a winning strategy (resp. winning tactic) for α in the Banach-Mazur game BM(X) played on X is sufficient for α having a winning strategy (resp. winning tactic) in BM(CL(X), τ V ), but not necessary, not even for a separable metric X. In the absence of quasi-regularity of a space X where α has a winning strategy in BM(X), α may or may not have a winning strategy in the Banach-Mazur game played on the Vietoris hyperspace.  相似文献   

2.
The Banach-Mazur game as well as the strong Choquet game are investigated on the Wijsman hyperspace from the nonempty player's (i.e. α's) perspective. For the strong Choquet game we show that if X is a locally separable metrizable space, then α has a (stationary) winning strategy on X iff it has a (stationary) winning strategy on the Wijsman hyperspace for each compatible metric on X. The analogous result for the Banach-Mazur game does not hold, not even if X is separable, as we show that α may have a (stationary) winning strategy on the Wijsman hyperspace for each compatible metric on X, and not have one on X. We also show that there exists a separable 1st category metric space such that α has a (stationary) winning strategy on its Wijsman hyperspace. This answers a question of Cao and Junnila (2010) [6].  相似文献   

3.
Summary Let (X,d) be a quasi-pseudo-metric space. We investigate hyperspace topologies on P0(X) defined by distance functionals. In particular, the K-topology is introduced and compared with other hyperspace topologies. Some properties of the Wijsman topology and the K-topology are explored.  相似文献   

4.
The relationship between the Wijsman topology and (proximal) hit-and-miss topologies is studied in the realm of quasi-metric spaces. We establish the equivalence between these hypertopologies in terms of Urysohn families of sets. Our results generalize well-known theorems and provide easier proofs. In particular, we prove that for a quasi-pseudo-metrizable space (X,T) the Vietoris topology on the set P 0(X) of all nonempty subsets of X is the supremum of all Wijsman topologies associated with quasi-pseudo-metrics compatible with T. We also show that for a quasi-pseudo-metric space (X,d) the Hausdorff extended quasi-pseudo-metric is compatible with the Wijsman topology on P 0(X) if and only if d –1 is hereditarily precompact.  相似文献   

5.
LetC(X,Y) be the space of continuous functions from a metric space (X,d) to a metric space (Y, e).C(X, Y) can be thought as subset of the hyperspaceCL(X×Y) of closed and nonempty subsets ofX×Y by identifying each element ofC(X,Y) with its graph. We considerC(X,Y) with the topology inherited from the Wijsman topology induced onCL(X×Y) by the box metric ofd ande. We study the relationships between the Wijsman topology and the compact-open topology onC(X,Y) and also conditions under which the Wijsman topology coincide with the Fell topology. Sufficient conditions under which the compactopen topology onC(X,Y) is weaker than the Wijsman topology are given (IfY is totally bounded, then for every metric spaceX the compactopen topology onC(X,Y) is weaker than the Wijsman topology and the same is true forX locally connected andY rim-totally bounded). We prove that a metric spaceX is boundedly compact iff the Wijsman topology onC(X, ℝ) is weaker than the compact-open topology. We show that ifX is a σ-compact complete metric space andY a compact metric space, then the Wijsman topology onC(X,Y) is Polish.  相似文献   

6.
LetC(X,Y) be the space of continuous functions from a metric space (X,d) to a metric space (Y, e).C(X, Y) can be thought as subset of the hyperspaceCL(X×Y) of closed and nonempty subsets ofX×Y by identifying each element ofC(X,Y) with its graph. We considerC(X,Y) with the topology inherited from the Wijsman topology induced onCL(X×Y) by the box metric ofd ande. We study the relationships between the Wijsman topology and the compact-open topology onC(X,Y) and also conditions under which the Wijsman topology coincide with the Fell topology. Sufficient conditions under which the compactopen topology onC(X,Y) is weaker than the Wijsman topology are given (IfY is totally bounded, then for every metric spaceX the compactopen topology onC(X,Y) is weaker than the Wijsman topology and the same is true forX locally connected andY rim-totally bounded). We prove that a metric spaceX is boundedly compact iff the Wijsman topology onC(X, ?) is weaker than the compact-open topology. We show that ifX is a σ-compact complete metric space andY a compact metric space, then the Wijsman topology onC(X,Y) is Polish.  相似文献   

7.
For a Tychonoff space X, we use ↓USC(X) and ↓C(X) to denote the families of the regions below all upper semi-continuous maps and of the regions below all continuous maps from X to I=[0,1], respectively. In this paper, we consider the spaces ↓USC(X) and ↓C(X) topologized as subspaces of the hyperspace Cld(X×I) consisting of all non-empty closed sets in X×I endowed with the Vietoris topology. We shall prove that ↓USC(X) is homeomorphic (≈) to the Hilbert cube Q=ω[−1,1] if and only if X is an infinite compact metric space. And we shall prove that (↓USC(X),↓C(X))≈(Q,c0), where , if and only if ↓C(X)≈c0 if and only if X is a compact metric space and the set of isolated points is not dense in X.  相似文献   

8.
Let (X,τ) be a topological space and let ρ be a metric defined on X. We shall say that (X,τ) is fragmented by ρ if whenever ε>0 and A is a nonempty subset of X there is a τ-open set U such that UA≠∅ and ρ−diam(UA)<ε. In this paper we consider the notion of fragmentability, and its generalisation σ-fragmentability, in the setting of topological groups and metric-valued function spaces. We show that in the presence of Baireness fragmentability of a topological group is very close to metrizability of that group. We also show that for a compact Hausdorff space X, σ-fragmentability of (C(X),‖⋅) implies that the space Cp(X;M) of all continuous functions from X into a metric space M, endowed with the topology of pointwise convergence on X, is fragmented by a metric whose topology is at least as strong as the uniform topology on C(X;M). The primary tool used is that of topological games.  相似文献   

9.
For X a metrizable space and (Y,ρ) a metric space, with Y pathwise connected, we compute the density of (C(X,(Y,ρ)),σ)—the space of all continuous functions from X to (Y,ρ), endowed with the supremum metric σ. Also, for (X,d) a metric space and (Y,‖⋅‖) a normed space, we compute the density of (UC((X,d),(Y,ρ)),σ) (the space of all uniformly continuous functions from (X,d) to (Y,ρ), where ρ is the metric induced on Y by ‖⋅‖). We also prove that the latter result extends only partially to the case where (Y,ρ) is an arbitrary pathwise connected metric space.To carry such an investigation out, the notions of generalized compact and generalized totally bounded metric space, introduced by the author and A. Barbati in a former paper, turn out to play a crucial rôle. Moreover, we show that the first-mentioned concept provides a precise characterization of those metrizable spaces which attain their extent.  相似文献   

10.
Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R) be the hyperspace of all nonempty closed subsets of X×R. We prove the following result. Let X be a countably paracompact normal space. The following are equivalent: (a) dimX=0; (b) the closure of C(X) in CL(X×R) with the Vietoris topology consists of all FCL(X×R) such that F(x)≠∅ for every xX and F maps isolated points into singletons; (c) each usco map which maps isolated points into singletons can be approximated by continuous functions in CL(X×R) with the locally finite topology. From the mentioned result we can also obtain the answer to Problem 5.5 in [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] and to Question 5.5 in [R.A. McCoy, Comparison of hyperspace and function space topologies, Quad. Mat. 3 (1998) 243-258] in the realm of normal, countably paracompact, strongly zero-dimensional spaces. Generalizations of some results from [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] are also given.  相似文献   

11.
We study the weak metric approximation property introduced by Lima and Oja. We show that a Banach space X has the weak metric approximation property if and only if F(Y,X), the space of finite rank operators, is an ideal in W(Y,X∗∗), the space of weakly compact operators for all Banach spaces Y.  相似文献   

12.
A net 〈A λ〉 of nonempty closed sets in a metric space 〈X, d〉 is declaredWijsman convergent to a nonempty closed setA provided for eachx εX, we haved(x, A)=limλ d(x, A). Interest in this convergence notion originates from the seminal work of R. Wijsman, who showed in finite dimensions that the conjugate map for proper lower semicontinuous convex functions preserves convergence in this sense, where functions are identified with their epigraphs. In this paper, we review the attempts over the last 25 years to produce infinite-dimensional extensions of Wijsman's theorem, and we look closely at the topology of Wijsman convergence in an arbitrary metric space as well. Special emphasis is given to the developments of the past five years, and several new limiting counterexamples are presented.  相似文献   

13.
For metric spaces (X, d x) and (Y, d y) we consider the Hausdorff metric topology on the set (CL(X × Y), ρ) of closed subsets of the product metrized by the product (box) metric ρ and consider the proximal topology defined on CL(X × Y). These topologies are inherited by the set G(X, Y) of closed-graph multifunctions from X to Y, if we identify each multifunction with its graph. Finally, we consider the topology of uniform convergence τ uc on the set F(X, 2Y) of all closed-valued multifunctions, i.e. functions from X to the set (CL(Y),) of closed subsets of Y metrized by the Hausdorff metric . We show the relationship between these topologies on the space G(X, Y) and also on the subspaces of minimal USCO maps and locally bounded densely continuous forms. This work was supported by Science and Technology Assistance Agency under the contract No. APVT-51-006904. The authors would like to thank.ubica Holá for suggestions and comments.  相似文献   

14.
We introduce the concept of a family of sets generating another family. Then we prove that if X is a topological space and X has W = {W(x): xX} which is finitely generated by a countable family satisfying (F) which consists of families each Noetherian of ω-rank, then X is metaLindelöf as well as a countable product of them. We also prove that if W satisfies ω-rank (F) and, for every xX, W(x) is of the form W 0(x) ∪ W 1(x), where W 0(x) is Noetherian and W 1(x) consists of neighbourhoods of x, then X is metacompact.  相似文献   

15.
The space PK of partial maps with compact domains (identified with their graphs) forms a subspace of the hyperspace of nonempty compact subsets of a product space endowed with the Vietoris topology. Various completeness properties of PK, including ?ech-completeness, sieve completeness, strong Choquetness, and (hereditary) Baireness, are investigated. Some new results on the hyperspace K(X) of compact subsets of a Hausdorff X with the Vietoris topology are obtained; in particular, it is shown that there is a strongly Choquet X, with 1st category K(X).  相似文献   

16.
Let X be a metric space and let ANR(X) denote the hyperspace of all compact ANR's in X. This paper introduces a notion of a strongly e-movable convergence for sequences in ANR(X) and proves several characterizations of strongly e-movable convergence. For a (complete) separable metric space X we show that ANR(X) with the topology induced by strongly e-movable convergence can be metrized as a (complete) separable metric space. Moreover, if X is a finite-dimensional compactum, then strongly e-movable convergence induces on ANR(X) the same topology as that induced by Borsuk's homotopy metric.For a separable Q-manifold M, ANR(M) is locally arcwise connected and A, B ? ANR(M) can be joined by an arc in ANR(M) iff there is a simple homotopy equivalence ?: AB homotopic to the inclusion of A into M.  相似文献   

17.
Using an isometric version of the Davis, Figiel, Johnson, and Pe?czyński factorization of weakly compact operators, we prove that a Banach spaceX has the approximation property if and only if, for every Banach spaceY, the finite rank operators of norm ≤1 are dense in the unit ball ofW(Y,X), the space of weakly compact operators fromY toX, in the strong operator topology. We also show that, for every finite dimensional subspaceF ofW(Y,X), there are a reflexive spaceZ, a norm one operatorJ:Y→Z, and an isometry Φ :FW(Y,X) which preserves finite rank and compact operators so thatT=Φ(T) oJ for allTF. This enables us to prove thatX has the approximation property if and only if the finite rank operators form an ideal inW(Y,X) for all Banach spacesY.  相似文献   

18.
For any set X and any relation ρ on X, let T(X,ρ) be the semigroup of all maps a:XX that preserve ρ. Let S(X) be the symmetric group on X. If ρ is reflexive, the group of automorphisms of T(X,ρ) is isomorphic to NS(X)(T(X,ρ)), the normalizer of T(X,ρ) in S(X), that is, the group of permutations on X that preserve T(X,ρ) under conjugation. The elements of NS(X)(T(X,ρ)) have been described for the class of so-called dense relations ρ. The paper is dedicated to applications of this result.  相似文献   

19.
If X is a compact-covering image of a closed subspace of product of a σ-compact Polish space and a compact space, then Ck(X,M), the space of continuous maps of X into M with the compact-open topology, is stratifiable for any metric space M.If X is σ-compact Polish, K is compact and M metric then every point of Ck(X×K,M) has a closure-preserving local base, and hence this function space is M1.  相似文献   

20.
This paper introduces the notion of a general approximation property, which encompasses many existing types of shadowing. It is proven that there exists a metric space X such that the sets of maps with many types of general approximation properties (including the classic shadowing, the L p -shadowing, limit shadowing, and the s-limit shadowing) are not dense in C(X), S(X), and H(X) (the space of continuous self-maps of X, continuous surjections of X onto itself, and self-homeomorphisms of X) and that there exists a manifold M such that the sets of maps with general approximation properties of nonlocal type (including the average shadowing property and the asymptotic average shadowing property) are not dense in C(M), S(M), and H(M). Furthermore, it is proven that the sets of maps with a wide range of general approximation properties (including the classic shadowing, the L p -shadowing, and the s-limit shadowing) are dense in the space of continuous self-maps of the Cantor set. A condition is given that guarantees transfer of general approximation property from a map on X to the map induced by it on the hyperspace of X. It is also proven that the transfer in the opposite direction always takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号