首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4–4.5 μm region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal, DFG power levels of 10 μW were generated at approximately 4 μm in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of ∼12 cm-1 and a temperature tuning rate of 1.02 cm-1/°C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described. Received: 23 October 2000 / Revised version: 22 January 2001 / Published online: 27 April 2001  相似文献   

3.
We demonstrate the generation of ultraviolet 33-fs pulses with a shot-to-shot energy fluctuation of less than 3% using sum frequency mixing of visible pulses of a noncollinear optical parametric amplifier with sub-40-fs pulses of a 1-kHz Ti:sapphire-amplified system. The pulses are transform-limited (ΔνΔτ=0.36) and tunable in the range from 315 nm to 355 nm with energy above 1 μJ (2.6 μJ at 330 nm). Received: 21 July 2000 / Published online: 8 November 2000  相似文献   

4.
We report the observation of several six-wave mixing processes which result in broadly tunable coherent emission in the wavelength range 1.20–1.45 m. These emissions are produced in potassium vapor which is simultaneously pumped by two pulsed dye lasers. One set of processes is produced when the frequency of the first laser is fixed to the potassium 4S»6S two-photon transition frequency, while the frequency of the second laser is tuned. The second set of processes is observed when both lasers are tuned, but with their sum frequency fixed to the 4S»6S two-photon transition. Peak output energies of 10 nJ/pulse have been observed.  相似文献   

5.
Tunable cw infrared radiation has been generated by noncollinear difference frequency mixing in LiIO3, using the output of an argon ion laser at 514 nm or 488 nm and the intracavity radiation of a Rhodamine 6 G dye laser. Infrared powers up to 4 μW in multimode and 0.5 μW in single-mode operation tunable in the range of 2.3 μm to 4.6 μm have been obtained. Properties and possibilities of the noncollinear mixing geometry and the intracavity mixing system are discussed.  相似文献   

6.
The generation of programmable complex femtosecond pulses in the mid infrared (3–10 μm) with high precision is reported. Designed pulse shapes in the near infrared (1–1.6 μm) are transferred to the mid infrared via difference-frequency mixing with a second infrared pulse spectrally narrowed in a zero-dispersion compressor. In particular, pulse sequences with variable relative phases have been obtained. The control of the pulse properties is achieved purely electronically, allowing for implementation into a feedback loop. Received: 12 December 2003 / Published online: 3 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-89/32905-200, E-mail: mcm@mpq.mpg.de  相似文献   

7.
Third-harmonic, difference-frequency, and sum-frequency generation processes in hollow fibers are experimentally studied with 30-ps pulses having an energy of several millijoules. The experimental dependence of the difference-frequency signal on the pressure of the gas filling the fiber agrees well with the results of calculations when the contribution of higher order waveguide modes is taken into consideration, thus indicating the importance of nonlinear-optical processes involving higher order waveguide modes of a hollow fiber. Hollow fibers are also shown to expand the possibilities of nonlinear-optical analysis of gases by allowing the generation of third-harmonic and sum-frequency signals, which vanish in the regime of tight focusing in a medium with normal dispersion. Received: 26 September 2000 / Revised version: 15 January 2001 / Published online: 30 March 2001  相似文献   

8.
Received: 20 September 1998 / Revised version: 27 January 1999  相似文献   

9.
It was shown that the periodically poled LiNbO3-waveguide with period of poling λ≈λ/ng (λ is the wavelength of emitted THz-wave, ng is a refractive index corresponding to optical group velocity) emits THz-wave difference-frequency generation (DFG) in the direction normal to the surface of the planar waveguide. The 5% distinction between the manufactured and required periods of gratings results only in a small deflection (∼6°) of the output THz-beam from the normal direction. The dependence of DFG efficiency on mode size is analyzed. The output THz power at λ=150 μm is estimated as 2 mW, taking into account imperfections in coupling incident beams with guided modes. It was shown that the efficiency of THz-wave DFG in surface-emitting geometry is more than for collinear geometry in bulk crystal, especially in the high-absorption wavelength region. Received: 16 May 2001 / Revised version: 13 August 2001 / Published online: 2 November 2001  相似文献   

10.
Passive mode-locking of a cw lamp-pumped Nd:YAG laser using nonlinear polarization switching in a type-II SHG crystal is reported. Light pulses with more than 5 W of average power and pulse duration shorter than 25 ps have been obtained at 1064 nm. Received: 29 January 1999 / Revised version: 24 March 1999 / Published online: 1 July 1999  相似文献   

11.
4 (PPKTP). We generated 12 μW of radiation tunable around 1.6 μm by difference-frequency mixing of the outputs of a frequency-doubled Nd:YLF laser at 523 nm (240 mW) and a tunable Ti:sapphire laser near 760 nm (340 mW). A temperature tuning rate of 0.73 nm/°C for the generated wavelength and a FWHM temperature acceptance bandwidth of 6.9 °C cm was observed. The effective d33 coefficient was estimated to be ∼5 pm/V. Received: 02 September 1998  相似文献   

12.
Using an FM-mode-locked Ti:Er:LiNbO3 waveguide laser as the fundamental source, wavelength conversion by cascaded χ(2)(2)-difference frequency generation with a conversion efficiency of up to +3(-4.6) dB was demonstrated at a pulse repetition rate of about 2 (10) GHz. In addition, multi-channel conversion was demonstrated with a fully packaged wavelength converter using a continuous fundamental source. Received: 29 May 2001 / Revised version: 10 August 2001 / Published online: 2 November 2001  相似文献   

13.
uv vac=351.165 nm) of a ps 1 kHz Nd:YLF laser system is frequency tripled in xenon and mercury vapour. About 4×104 photons per pulse, i.e. 4×107 photons/s, are generated in xenon yielding a conversion efficiency of η=3×10-10. The unusual frequency tripling in xenon takes place in a positive dispersive wavelength region. It is shown that Kerr-induced dispersion in the atomic system and a fifth-order process rather than a third-order process can explain the frequency tripling. For comparison a four-wave mixing process is investigated in negative dispersive mercury vapour. Due to absorption of the generated VUV radiation in the autoionization region of mercury the observed effective efficiency is, in our experimental arrangement, even lower than in xenon. An analysis of the VUV generation with respect to absorption is given. Received: 1 September 1997  相似文献   

14.
We demonstrate intracavity frequency doubling of a standard femtosecond Ti:sapphire oscillator. The cavity is extended with a pair of focusing mirrors and a 0.5-mm-thick BBO crystal. We achieve a repetition rate of 50 MHz and simultaneously generate 22 mW of 55-fs pulses at 810 nm and 200 mW of 73-fs pulses at 405 nm, which corresponds to 4 nJ per pulse. We create a total of 330-mW, 405-nm light when pumping the Ti:sapphire crystal with 5.7 W from an Ar-ion laser, corresponding to a conversion efficiency of 5.7%. No saturation is found, which implies that higher outputs can be achieved with higher pump rates. Preliminary results from the use of blue pulses as pump in an optical parametric amplifier seeded by pulses from a photonic crystal fiber are presented. Received: 27 January 2003 / Revised version: 27 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +45-861/96199, E-mail: tva@chem.au.dk  相似文献   

15.
16.
4 laser. The amplified pulses were frequency-converted in the blue and in the UV by harmonic generation (doubling and tripling) in two lithium triborate (LBO) crystals. Received: 11 March 1997/Accepted: 24 April 1997  相似文献   

17.
18.
We have used a violet diode laser at 404 nm and a distributed feedback diode laser at 1320 nm to produce 0.8 nW of radiation at 309 nm by sum frequency generation in beta-barium borate. The UV radiation was tuned mode-hop-free over 30 GHz and used to detect OH radicals produced in a microwave discharge. By chopping the UV light at 500 Hz, we observed a concentration of 2×1012 cm-3 with a signal to noise ratio of 30:1. Received: 16 November 2001 / Revised version: 23 January 2002 / Published online: 14 March 2002  相似文献   

19.
2 laser to 2.38 μm has been studied experimentally by using tandem AgGaSe2 and ZnGeP2 crystals. Up to 24 mJ per pulse of 2.38-μm radiation at a 10% overall conversion efficiency has been achieved with a mode-locked pulse format. A computer model was also developed and its predictions are in reasonable agreement with our experimental data. Received: 6 July 1997/Revised version: 8 December 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号