首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of formation of AlSO 4 + has been investigated in mixtures of water and formamide. In contrast to similar measurements with BeSO4, the substitution of solvating formamide molecules by the sulfate ion cannot be observed on the aluminum cation. On the other hand, with Al3+ cations three well separated water substitution processes are observed, as compared to a single one only with Be2+. An explanation for this behavior and for the different pH dependence of the sulfate complex formation for Al3+ and Be2+ cations is suggested.  相似文献   

2.
Summary Diabatic and adiabatic potential energy curves have been determined for the complexation of beryllium cation with a water molecule, by means of multi-reference perturbation CI. The quasi-diabatic states correspond to Be2+H2O and to nine charge transfer states (Be+H2O+): at short beryllium-water distances the ground state is essentially Be2+H2O, but at large distances several charge transfer states have lower energies. The nature of the curve crossings of the ground and lowest excited states in the [BeH2O]2+ system is clarified. The changes brought about by the presence of a second water molecule are investigated.  相似文献   

3.
The interplay of metal ions with polysaccharides is important for the immune recognition in the lung. Due to the localization of beryllium associated diseases to the lung, it is likely that beryllium carbohydrate complexes play a vital role for the development of berylliosis. Herein, we present a detailed study on the interaction of Be2+ ions with fructose and glucose as well as simpler biomimetic ligands, which emulate binding motives of saccharides. Through NMR and IR spectroscopy as well as single-crystal X-ray diffraction, complemented by competition reactions we were able to determine a distinctive trend in the binding affinity of these ligands. This suggests that under physiological conditions beryllium ions are only bound irreversibly in glycoproteins or polysaccharides if a quasi ideal tetrahedral environment and κ4-coordination is provided by the respective biomolecule. Furthermore, Lewis acid induced conversions of the ligands and an extreme increase in the Brønstedt acidity of the present OH-groups imply that upon enclosure of Be2+, alterations may be induced by the metal ion in glycoproteins or polysaccharides. In addition the frequent formation of Be-O-heterocycles indicates that multinuclear beryllium compounds might be the actual trigger of berylliosis. This investigation on beryllium coordination chemistry was supplemented by binding studies of selected biomimetic ligands with Al3+, Zn2+, Mg2+, and Li+, which revealed that none of these beryllium related ions was tetrahedrally coordinated under the give conditions. Therefore, studies on the metabolization of beryllium compounds cannot be performed with other hard cations as a substitute for the hazardous Be2+.  相似文献   

4.
This work presents results of the numerical solution to a system of equations of material balance and the movement of particles in solution under the influence of the forces of diffusion, migration, and convection, which describe the process of mass transport during the reduction of hydrogen ions at a rotating disk electrode from aqueous sulfuric acid solutions with and without excess supporting electrolyte. Results of the calculations show that the diffusion kinetics of hydrogen ion reduction can be observed only with measurements in dilute (≤10?3 M) sulfuric acid solutions with an excess of indifferent supporting electrolyte. For more acidic solutions it is necessary to take into account the simultaneous diffusion of hydrogen and bisulfate ions. In the study of the regularities of hydrogen ion reduction in sulfuric acid solutions with a sulfate supporting electrolyte, it is necessary to take into account that with excess supporting electrolyte, the limiting current of hydrogen reduction is caused solely by the diffusion of bisulfate ions, but for small concentration ratios of the supporting electrolyte to acid, the influence of migration effects is significant.  相似文献   

5.
Composite diffusion coeffcients have been measured for the various species labeled with35S which are present in a number of aqueous solutions due to the introduction of the labeled material as35SO 4 2– . The solutions were of two components consisting of water and either sodium sulfate. The diffusion coeffcient measured for sodium chloride solutions is similar to literature data for the corresponding diffusion in sodium sulfate solutions. The results for sulfuric acid and ammonium hydrogen sulfate have been interpreted using literature data for the relative concentrations of the hydrogen sulfate and sulfate ions to obtain estimates for the diffusion coefficents of those ions. The results for perchloric acid, regarded as representing the diffusion coefficient of the hydrogen sulfate ion, have a much different concentration dependence to that observed for the estimates for that ion in sulfuric acid and ammonuim hydrogen sulfate. The difference is attributed to the effect of the perchlorate ion on the water structure.  相似文献   

6.
A kinetic study of the hydrolysis of ethyl isovalerate in the methanesulfonic acid-water system from pure water to 60.5% CH3SO3H at 25°C showed that the hydrolysis rate is directly proportional to the concentration of H5O2 + ions determined by IR spectroscopy. The hydrolysis mechanism is the same as in hydrochloric acid and sulfuric acid solutions. Evidence was found for correctness of the measurements of the equilibrium concentrations of molecules and ions in aqueous methanesulfonic acid solutions by multiple frustrated total internal reflection IR spectroscopy. The possibility was demonstrated for an independent measurement of the equilibrium concentrations of H5O2 + ions by a kinetic method in aqueous acid solutions.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1694–1697, July, 1991.  相似文献   

7.
Infrared spectra of the title compounds are presented and discussed in the regions of the uncoupled O–D stretches of matrix-isolated HDO molecules (isotopically dilute samples). The strengths of the hydrogen bonds are analyzed in terms of the respective Ow?O bond distances, the Be–OH2 interactions (synergetic effect), the proton acceptor capabilities of the sulfate and selenate oxygen atoms as deduced from Brown's bond valence sums of the oxygen atoms, the anti-cooperative effect (proton acceptor and proton donor competitive effect). The infrared spectroscopic experiments reveal that comparatively strong hydrogen bonds are formed in the compounds under study, analogical to other hydrated beryllium salts owing to the large ionic potential of the small Be2+ ions. The wavenumbers of νOD show that the water molecules in BeSO4·4H2O and in the double salts are strongly energetically distorted, i.e. their local symmetries deviate remarkably from the C2v molecular symmetry (for example, Δν have values of 74 and 36 cm?1 for H2O(1) and H2O(2) in K2Be(SO4)2·2H2O, and 119 cm?1 in BeSO4·4H2O). The hydrogen bonds in K2Be(SeO4)2·2H2O are stronger than those in K2Be(SO4)2·2H2O due to the stronger proton acceptor capability of the SeO42? ions. The proton donor strengths of the water molecules in K2Be(SO4)2·2H2O and K2Be(SeO4)2·2H2O are greater than those of the water molecules in BeSO4·4H2O and BeSeO4·4H2O (i.e. larger deviations from Mikenda's curve) due to the different compositions of the respective beryllium tetrahedra-Be(XO4)2(H2O)2 in the double salts and Be(H2O)4 in the simple ones (proton donor competitive effect). The intramolecular O–H bond lengths are derived from the νOD vs. rOH correlation curve [H.D. Lutz, C. Jung, J. Mol. Struct. 404 (1997) 63].  相似文献   

8.
The oxidation of malonic acid by manganese(III) sulfate in a medium of sulfuric acid and by hexaquomanganese(III) ions in a noncomplexing perchloric acid medium was studied.The reaction stoichiometry was found and the effect of the concentrations of H+, Mn2+, and HSO4? ions and of the initial reactant concentrations on the course and rate of the reaction was studied.The optimum conditions have been found for analytical use of the reaction, procedures have been proposed for the determination of malonic acid using the two reagents, and the accuracy and reproducibility of the determinations have been found.  相似文献   

9.
Bentonite samples collected from vicinity of Petrovac and Aleksinac were treated with different sulfuric acid molarities. Acid attack dissolved the octahedral sheets by interlayer and edge attack. The effects of the H2SO4 acid caused an exchange of Al3+, Fe3+ and Mg2+ with H+ ions leading to a modification of the smectite crystalline structure. The Mg and Fe substitution in the octahedral sheets promoted the dispersion of corresponding layers and formation of amorphous silicon. The activated bentonites, after the treatment of sulfuric acid, exhibited a lower cation-exchange capacity (CEC) and significant increase of specific surface area from 6 to 387 m2 g−1 (bentonite from Petrovac) and from 11 to 306 m2 g−1 (bentonite from Aleksinac). The acid reaction caused a splitting of particles within the octahedral sheet which led to an increase in specific surface area and decrease in CEC in both bentonites.  相似文献   

10.
In order to predict the extraction ability of 12-crown-4 for different metallic ions, the complexes [M(12-crown-4)] and [M(H2O)4] (where M=Li+, Na+, K+, Be2+, Mg2+, Ca2+, Cu2+ and Zn2+) were investigated by the density functional theory without restrictions for their geometry. The metal binding capability was evaluated using the binding energy, and the effect of nature of the metal on the binding properties was also studied. The results of the calculations showed that the coordination ability of a donor molecule towards different metal ions increased in proportion to their ionization potential. In addition, based on the extraction distribution coefficient, we found that 12-crown-4 can selectively extract Cu2+ and Be2+ ions from aqueous solutions of mixed cations. Obviously, the stability of complexes and the extraction power of extractants depend greatly on the nature of the metal ions. Calculation results from our study could be used to predict the extraction power of this crown ether and could play a guiding role in planning experiments.  相似文献   

11.
The surface region of sulfate aerosols (supercooled aqueous concentrated sulfuric acid solutions) is the likely site of a number of important heterogeneous reactions in various locations in the atmosphere, but the surface region ionic composition is not known. As a first step in exploring this issue, the first acid ionization reaction for sulfuric acid, H2SO4 + H2O HSO4 + H3O+, is studied via electronic structure calculations at the Hartree–Fock level on an H2SO4 molecule embedded in the surface region of a cluster containing 33 water molecules. An initial H2SO4 configuration is selected which could produce H3O+ readily available for heterogeneous reactions, but which involves reduced solvation and is consistent with no dangling OH bonds for H2SO4. It is found that at 0 K and with zero-point energy included, the proton transfer is endothermic by 3.4 kcal/mol. This result is discussed in the context of reactions on sulfate aerosol surfaces and, further, more complex calculations.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

12.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

13.
Lattice Vibration Spectra. LXIII. Be(IO3)2 · 4 H2O, a Hydrate with Unusual Bonding and Lattice Dynamics The IR and Raman spectra (4000–50 cm?1) of Be(IO3)2 · 4 H2O and of deuterated specimens are recorded at 90 and 300 K and discussed in terms of the unusual relations of the masses of the atoms involved and the large polarization power of the beryllium ions. Thus, the translatory modes of the Be2+ ions (BeO4 skeleton vibrations), the librations of the H2O molecules, and the internal vibrations of the IO3? ions in the spectral regions of 300–400 and 600–1000 cm?1 couple and coincide producing unusual vH/vD isotopic ratios of partly < 1. The H-bond donor strengths of the water molecules is so much increased (due to the very large ionic potential of Be2+ ions, viz. 49 e nm?1) (synergetic effect) that the H-bonds formed are similar in strength as those in hydrates of hydroxides with the very strong H-bond acceptor group OH? (vOD of matrix isolated HDO molecules 2 074 and 2 244 (H2O I) and 2 206 and 2 349 cm?1 (H2O II))  相似文献   

14.
Kinetics of the oxidation of tris(2,2′-bipyridine)iron(II) sulfate by ceric sulfate was spectrophotometrically studied in an aqueous sulfuric acid medium. Different methods, including isolation, integration and half-life, were employed to determine the reaction order. The redox reaction was found to be first-order with respect to the reductant, tris(2,2′-bipyridine)iron(II) sulfate, and the oxidant, ceric sulfate. Complex kinetics was observed with an increase in the initial concentration of the oxidant. The influence of the dielectric constant, [H+] and [SO4 2-] on the rate was also investigated. The increase in the dielectric constant and H+ ion concentration of the medium retard the rate, while an increase in the SO4 2- ion concentration first accelerates the rate, and then retards the reaction. The effect of each factor, i.e., the dielectric constant, H+ ions and SO4 2- ions, suggests that Ce(SO4)3 2- is the active species of cerium(IV). A rate law consistent with the observed kinetic data and the proposed mechanism is suggested to be: {fx631-1  相似文献   

15.
The Soret coefficient of aqueous sulfuric acid has been determined conductimetrically from 0.0005 to 0.2m at 25°C. The derived enthalpies of transport increase sharply as the concentration drops, approaching a limiting value near 35 kJ-mol–1. The increase, in the enthalpy of transport at low concentrations is due to the large intrinsic enthalpies of transport of the hydrogen and sulfate ions that are produced by the dissociation of bisulfate ions. The enthalpy of dissociation of the bisulfate ions reduces the acid's enthalpy of transport by up to 1.8 kJ-mol–1.  相似文献   

16.
Two ionic carbon nitride type compounds containing the ammelinium cation, ammelinium sulfate cyanuric acid (6C3N5H6O+ · 3SO42– · 1?C3N3H3O3 · H2O) ( 1 ) and ammelinium sulfate monohydrate (2C3N5H6O+ · SO42– · H2O) ( 2 ) were synthesized through hydrolysis of melam (C6N11H9) in diluted sulfuric acid. 1 crystallizes in hexagonal space group P63 (no. 173) with lattice parameters of a = 14.642(3), c = 13.113(4), and Z = 2. The structure is comprised of protonated ammelinium ions and neutral cyanuric acid molecules, which form a layered structure, as well as sulfate ions that span through these layers. 2 crystallizes in the triclinic space group P1 with lattice parameters of a = 7.404(3), b = 9.673(4), c = 10.040(4), α = 91.098(15), β = 109.884(10), γ = 92.567(13), and Z = 2. As for 1 , the ammelinium rings form layers with the sulfate ions located in between. In both structures, no extended hydrogen bond networks between the respective triazine‐based molecules are formed. Instead, single molecules or small building blocks occur isolated and interact primarily with sulfate anions. Compound 1 , which was obtained phase pure, was further investigated by FTIR spectroscopy, solid‐state NMR spectroscopy and powder X‐ray diffractometry.  相似文献   

17.
In the title compounds, 3-(dihydroxyboryl)anilinium bisulfate monohydrate, C6H9BNO2+·HSO4·H2O ( I ), and 3-(dihydroxyboryl)anilinium methyl sulfate, C6H9BNO2+·CH3SO4 ( II ), the almost planar boronic acid molecules are linked by pairs of O—H…O hydrogen bonds, forming centrosymmetric motifs that can be described by the graph-set R22(8) motif. In both crystals, the B(OH)2 group acquires a synanti conformation (with respect to the H atoms). The presence of the hydrogen-bonding functional groups B(OH)2, NH3+, HSO4, CH3SO4 and H2O generates three-dimensional hydrogen-bonded networks, in which the bisulfate (HSO4) and methyl sulfate (CH3SO4) counter-ions act as the central building blocks within the crystal structures. Furthermore, in both structures, the packing is stabilized by weak boron–π interactions, as shown by noncovalent interactions (NCI) index calculations.  相似文献   

18.
The adsorption of methylviologen dications (MV2+) on single‐crystalline Au electrodes in both H2SO4 and HClO4 was examined. MV2+ strongly interacted with sulfate and bisulfate anions adsorbed on the Au(111) electrode surface in 0.05 M H2SO4 under a controlled potential of 1.25 V vs. the reversible hydrogen electrode (RHE). A characteristic non‐Faradaic current was observed at 1.10 V vs. RHE. When adsorption of MV2+ was carried out in 0.1 M HClO4, the electrochemical response of MV2+ was less than that obtained in H2SO4. The results show that the formation of a highly ordered sulfate/bisulfate adlayer plays an important role in the formation of condensed MV2+ layers. Examination of polycrystalline Au and Au(100) electrodes revealed a poor electrochemical response due to the surface roughness of the Au substrate, but the electrochemical detection was applicable to polycrystalline Au electrodes. A systematic investigation of the structural dependency of viologen derivatives showed that molecular size is important for electrostatic interactions with a highly ordered sulfate/bisulfate adlayer. The findings of the present study demonstrate successful detection of MV2+ at a concentration of ≤1 pM with a non‐Faradaic current.  相似文献   

19.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

20.
The kinetics of the redox reaction between mandelic acid (MA) and ceric sulfate have been studied in aqueous sulfuric acid solutions and in H2SO4? MClO4 (M+ = H+, Li+, Na+) and H2SO4? MHSO4 (M+ = Li+, Na+, K+) mixtures under various experimental conditions of total electrolyte concentration (that is, ionic strength) and temperature. The oxidation reaction has been found to occur via two paths according to the following rate law: rate = k[MA] [Ce(IV)], where k = k1 + k2/(1 + a)2[HSO4?]2 = k1 + k2/(1 + 1/a)2[SO42?]2, a being a constant. The cations considered exhibit negative specific effects upon the overall oxidation rate following the order H+ ? Li+ < Na+ < K+. The observed negative cation effects on the rate constant k1 are in the order Na+ < Li+ < H+, whereas the order is in reverse for k2, namely, H+ ? Li+ < Na+. Lithium and hydrogen ions exhibit similar medium effects only when relatively small amounts of electrolytes are replaced. The type of the cation used does not affect significantly the activation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号