首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Good agreement between the impurity levels in a batch of a related impurity of ranitidine were obtained by CE and HPLC. A solution of the impurity was positioned on the CE autosampler and analysed sequentially. The extent of degradation was monitored by loss of main peak and the formation of two principal degradation products. It was found that after 9.25 hours only 2% area/area of the original impurity remained. Buffering of the sample solution to pH 7 was shown to minimise this degradation.Unattended in-situ stability testing of an solution of the impurity in water was performed by CE.  相似文献   

2.
An automated method for the rapid determination of microorganisms using a flow-injection system is presented. Electrochemical measurement of a mediator reduced by microbial metabolism allowed the determination of fungi and bacteria in a few minutes. The lowest detection limit was 5 × 106 colony-forming units (cfu) ml?1 for Escherichia coli. Correlation between the flow-injection method and standard microbiological methods was excellent (r = 0.997, n = 4 for Beauveria bassiana; r = 0.997, n = 7 for E. coli). The flow-injection system was applied to the on-line control of an E. coli cultivation.  相似文献   

3.
We describe a rapid, simple, and highly efficient capillary electrophoresis (CE)-based method for the analysis of nanoparticles (NPs). In this study, we used the reversed electrode polarity stacking mode (REPSM) of CE to assess the feasibility of enhancing the detection of Au NPs and Au/Ag NPs, optimizing parameters such as the length of time for which the REPSM was applied, the concentrations of the buffer and the sodium dodecylsulfate (SDS) surfactant, and the pH. Under the optimized on-line enhancement conditions [buffer: SDS (40 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 10.0; applied voltage: 20 kV; REPSM applied for 24s], the detection limits of the Au NPs and Au/Ag NPs increased by ca. 30- and 140-fold, respectively. In addition, when the NPs were subjected to on-line enhancement and separation by CE using diode array detection (DAD), this approach allowed chemical characterization of the NP species. Our results suggest that such CE analyses will be useful for accelerating the rates of fabrication and characterization of future nanomaterials.  相似文献   

4.
CZE with UV-absorption detection has been used for the separation and determination of enkephalin-related peptides. The experimental conditions, such as pH and concentration of running buffer, applied voltage, injection method, and time, were investigated in detail. Excellent separation efficiency could be obtained for ten enkephalin-related peptides with a 50 microm (ID) x 58 cm capillary using sodium dihydrogen phosphate as the running buffer (pH 3.11) when 20 kV of applied voltage was used. The concentration detection limits were found to be in the range of 0.31-1.94 microg/mL (defined as S/N = 3). The proposed method has been applied to analyze the spiked cerebrospinal fluid (CSF) sample, and the results showed that CZE is a powerful technique for separation and detection of the above biological peptides.  相似文献   

5.
An on-line multichannel Raman spectroscopic detection system for capillary zone electrophoresis using a charge-coupled device as the detector is described. Resonant, near-resonant and non-resonant excitation Raman spectroscopies are employed. The 400 cm-1 spectral window provides adequate information to identify resolved and unresolved compounds. The use of analyte velocity reduction to allow increased data acquisition times is described. With near-resonant enhancement, the technique is shown to allow detection of 500 attomoles of methyl orange from a 5-nl injection volume, corresponding to 1 x 10(-7) M.  相似文献   

6.
毛细管电泳分析中手性化合物的定性检测   总被引:1,自引:0,他引:1  
陈丽霞  赵志毅  刘明霞  李向军 《色谱》2020,38(9):1038-1045
毛细管电泳(CE)作为一种新型分离分析技术,具有分离效率高、分析速度快、样品用量少、分离模式灵活多样等众多优势,在手性物质分离等领域应用广泛。在以往的工作中,手性化合物的CE分离模式、手性拆分剂选择及提高分离度等研究已作了详尽报道,而成功分离后的手性物质定性、对映体出峰顺序确认等问题也至关重要。该文以CE手性化合物分离分析中是否依赖标准品分类,及其定性检测方法进行了总结。利用CE分离分析手性样品,若待测物有手性对映体标准品时,其定性通常通过比较标准品迁移时间或标准加入法完成。基于检测器的不同,依赖标准品的CE分析主要分为光学、质谱和电化学3类检测模式。其中光学检测又包含紫外-可见(UV)、激光诱导荧光(LIF)、化学发光(CL)等多种检测方式。不同的检测方式决定了样品前处理方式的差异,随之形成的谱图及手性化合物定性方式也大相径庭。当缺少手性对映体标准品时,可用的CE手性分离分析方法主要有酶消解和抗体添加法、计算法等。前两种方法主要依据对映体与特定消解酶或抗体间的相互作用,完成手性物质的选择定性,适用范围均较局限。相比较,借助理论计算,使CE结合圆二色光谱(CD)的计算法操作简单,定性准...  相似文献   

7.
On-line preconcentration methods for capillary electrophoresis   总被引:3,自引:0,他引:3  
Osbourn DM  Weiss DJ  Lunte CE 《Electrophoresis》2000,21(14):2768-2779
The limits of detection (LOD) for capillary electrophoresis (CE) are constrained by the dimensions of the capillary. For example, the small volume of the capillary limits the total volume of sample that can be injected into the capillary. In addition, the reduced pathlength hinders common optical detection methods such as UV detection. Many different techniques have been developed to improve the LOD for CE. In general these techniques are designed to compress analyte bands within the capillary, thereby increasing the volume of sample that can be injected without loss of CE efficiency. This on-line sample preconcentration, generally referred to as stacking, is based on either the manipulation of differences in the electrophoretic mobility of analytes at the boundary of two buffers with differing resistivities or the partitioning of analytes into a stationary or pseudostationary phase. This article will discuss a number of different techniques, including field-amplified sample stacking, large-volume sample stacking, pH-mediated sample stacking, on-column isotachophoresis, chromatographic preconcentration, sample stacking for micellar electrokinetic chromatography, and sweeping.  相似文献   

8.
On-line ion-exchange preconcentration, performed in a flow injection analysis system, has been integrated with capillary electrophoresis via a specially designed interface, and a sensitive and selective method for the determination of nitrite, nitrate, bromide and iodide using direct UV absorbance detection has been developed. Fivefold enrichment of these aforementioned anions can be realised. Separation conditions such as carrier electrolyte and concentration of electroosmotic modifier were investigated. Limits of detection were ca. 10 ng ml−1 for nitrite and nitrate in aqueous samples, and the overall relative standard deviation was about 5%.  相似文献   

9.
An on-line affinity selection method using a polymeric monolithic support is proposed for the retention of histidine-containing peptides and their subsequent separation by capillary zone electrophoresis (CZE). Monolithic capillary columns were prepared in fused-silica capillaries of 150 mum inner diameter (ID) by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iminodiacetic acid (IDA) and copper ion. Monolithic microextractors were coupled on-line near the inlet of the separation capillary (fused-silica capillary, 75 mum ID x 28 cm from the microextractor to the detector). Model peptide mixtures of histidine-containing and histidine-noncontaining peptides were assessed. Peptides were released from the sorbent by a 5 mM imidazole solution and then separated by CZE with ultraviolet detection. Relative standard deviation values for migration times and corrected peak areas were found to be lower than 5.8 and 10.5%, respectively. IDA-Cu(II) ion modified monolithic microextractors showed a chromatographic behavior and could be reused at least 25 times. The use of monolithic supports proved to be an advantageous alternative to packed particles for the preparation of microextractors.  相似文献   

10.
Bonneil E  Waldron KC 《Talanta》2000,53(3):687-699
Peptide mapping has been widely used for the identification of modified proteins involved in certain diseases. Despite the fact that capillary electrophoresis (CE) has been shown to be a powerful tool for the separation and detection of tryptic peptide fragments after protein digestion, this technique lacks sensitivity for mapping proteins isolated in very small quantities from biological samples. Consequently, it has been necessary to preconcentrate the protein before adding the proteolytic enzyme for digestion in solution. These experimental steps are quite long, labor intensive and require a lot of sample handling. In this paper, we describe an on-line system allowing digestion of the protein, followed by preconcentration, separation and detection of the tryptic fragments in 4 h. Up to an 800-fold preconcentration factor was achieved for cytochrome c, despite a loss of separation efficiency induced by the multiple-valve design of the system and dispersion of the 60-nl desorption plug. Moreover, our system showed good migration time reproducibility between peptide maps and could be reused for several samples.  相似文献   

11.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

12.
Capillary electrophoresis (CE), using highly-sulfated cyclodextrins as chiral selectors, has been applied to determine the chiral purity of pharmaceutical compounds. A chiral separation strategy, developed earlier for racaemic mixtures, was applied on four basic drugs (propranolol, atenolol, chlorpheniramine and tryptophan methylester). The aim was to develop validated separation methods which allow determination of 0.1% impurity levels of the unwanted enantiomers (distomer) in the presence of 99.9% of the active compound (eutomer). The linearity, quantification limits for the trace enantiomers and the precision of the measurements were determined. In a second part, impurity separations have been simulated in order to evaluate the required resolution when assaying impurities. It is shown that a baseline resolution of 1.5, generally accepted for racaemic mixtures, does not always allow good impurity determinations. Two alternative methods to solve this problem have been proposed.  相似文献   

13.
K A Assi  B J Clark  K D Altria 《Electrophoresis》1999,20(13):2723-2725
The use of a chirally selective capillary electrophoresis method is reported for the enantioselective purity determination of propranolol drug substance. The method employed a combination of both charged and neutral cyclodextrin. An internally coated capillary was used to suppress electroosmotic flow and potential peak tailing. The method was capable of monitoring below 0.1% m/m of the undesired impurity. Acceptable validation data was also obtained for recovery, linearity, and for both short and long-term injection precision.  相似文献   

14.
A spectrophotometric flow-injection procedure for the determination of sulphite in aqueous media over the range 0.5–20 mg 1?1 is described. The reagent used was the organic disulphide 5,5′-dithiobis(2-nitrobenzoic acid). Results are presented for a laboratory-based method for sulphite in water and a potential on-line method for sulphite in high ionic strength potassium chloride brine. The general attractions of flow-injection-based monitors for the on-line analysis of liquid process streams are also discussed.  相似文献   

15.
This overview highlights the possibilities of on- or in-line preconcentration procedures in combination with a CZE separation, focused on the determination of peptides and proteins. The discussed methods, including sample stacking, field-amplified injection, isotachophoresis, solid phase extraction, membrane preconcentration, electroextraction, supported liquid membranes, hollow fibers, immunoaffinity, and molecularly imprinted polymers technology preconcentration are categorized in electrophoresis-based and chromatography-based preconcentration. The chromatography-based preconcentration is subdivided in low-specificity and high-specificity methods. A number of preconcentration methods are available, however, this paper demonstrates that various compounds in different media (aqueous solutions, urine, and plasma) require different preconcentration systems. The preconcentration techniques of first choice in general seem to be solid-phase extraction and membrane preconcentration, because of their high concentration ability, multiapplicability, relative simplicity and clean-up capability. For the future, hollow fibers seem to hold a great potential as preconcentration technique, yielding high concentration factors, using simple designs. New techniques, such as hollow fibers, molecularly imprinted polymers technology and supported liquid membranes may have the potential to supersede the conventional preconcentration techniques in some cases. The larger the arsenal of preconcentration techniques becomes, the more efficiently peptides and proteins may be analyzed in the future. These techniques, in some cases, require pre-cleanup procedures, to ensure the purity of the samples to concentrate.  相似文献   

16.
Sex determination of anonymous samples is a requirement before analysis of DNA variation on X or Y chromosomes. Based on this, we designed a method for screening samples on different DNA capillary sequencing instruments with a sensitivity that is able to quantify sex chromosome abnormalities. The two different amelogenin alleles sited on the X and Y chromosomes were polymerase chain reaction amplified with the same set of primers and separated by denaturant capillary electrophoresis (DCE). Sex chromosome ratios could be reproducibly determined with a relative standard deviation of 8.7%, which is sufficient to distinguish a normal XY karyotype from an XYY karyotype associated with Klinefelter syndrome. Reconstruction experiments demonstrated sensitivity down to a simulated Y:X allelic ratio of 1:127 in all three instruments, enabling the prediction of sex chromosomal aneuploidies. When tested on anonymous pooled and single samples, DCE gave a good prediction of the male to female ratio in pools of 1000 blood donors. In conclusion, DCE is a simple and robust method for sex determination that can be readily performed on commercially available CE systems.  相似文献   

17.
We report the first successful hyphenation of a Fabry Pérot quantum cascade (QC) laser to a capillary electrophoresis system. This involved use of a dedicated IR-transparent flow cell, made of CaF2, constructed by means of SU-8 based lithography and low temperature wafer bonding techniques. Adenosine, guanosine, xanthosine and adenosine-5'-monophosphate were separated in a borate-containing separation electrolyte (10 mM, pH 9.3). Functional group (carbohydrate) detection was accomplished by use of the 1080 cm(-1) emission line of the available QC-laser. The assessable optical path length could be increased, from the normally available 10-15 microm in CE-FTIR analyses, to 60 microm using this powerful mid-infrared laser and aqueous solutions.  相似文献   

18.
A flow-injection immunoassay (FI-IA) method with amperometric detection for aflatoxin M1 (AFM1) determination in milk has been developed. The first step consists in an incubation of the sample containing AFM1 (Ag) with fixed amounts of anti-AFM1 antibody (Ab) and of the tracer (Ag*, AFM1 covalently coupled to HRP) until equilibrium is reached. In this mixture a competition occurs between Ag and Ag* for the Ab. The mixture is then injected into a flow system where the separation of the free tracer (Ag*) and the antibody-bound tracer (AbAg*) is performed in a column with immobilized Protein G. The antigen–antibody complexes are retained in the column due to the high affinity of the Protein G for the antibody. The activity of the eluted enzyme label is then amperometrically detected.

The immunoassay was optimised relative to conditions for antibody–antigen incubation (pH, incubation time, ionic strength, temperature) and enzymatic label detection. This method showed a dynamic concentration range between 20 and 500 ppt AFM1, a low detection limit (11 ppt), good reproducibility (RSD < 8%) and a high throughput (six samples per hour in triplicate). Different milk samples were analysed and the results were in good agreement with those obtained by HPLC using the AOAC 2000.08 method.  相似文献   


19.
Capillary electrophoretic analysis of individual submicrometer size particles has been previously done using custom-built instruments. Despite that these instruments provide an excellent signal-to-noise ratio for individual particle detection, they are not capable of performing automated analyses of particles. Here we report the use of a commercial Beckman P/ACE MDQ capillary electrophoresis (CE) instrument with on-column laser-induced fluorescence (LIF) detection for the automated analysis of individual particles. The CE instrument was modified with an external I/O board that allowed for faster data acquisition rates (e.g. 100 Hz) than those available with the standard instrument settings (e.g. 4 Hz). A series of eight hydrodynamic injections expected to contain 32 +/- 6 particles, each followed by an electrophoretic separation at -300 V cm(-1) with data acquired at 100 Hz, showed 28 +/- 5 peaks corresponding to 31.9 particles as predicted by the statistical overlap theory. In contrast, a similar series of hydrodynamic injections followed by data acquisition at 4 Hz revealed only 8 +/- 3 peaks suggesting that the modified system is needed for individual particle analysis. Comparison of electropherograms obtained at both data acquisition rates also indicate: (i) similar migration time ranges; (ii) lower variation in the fluorescence intensity of individual peaks for 100 Hz; and (iii) a better signal-to-noise ratio for 4 Hz raw data. S/N improved for 100 Hz when data were smoothed with a binomial filter but did not reach the S/N values previously reported for post-column LIF detection. The proof-of-principle of automated analysis of individual particles using a commercially available CE system described here opens exciting possibilities for those interested in the study and analyses of organelles, liposomes, and nanoparticles.  相似文献   

20.
Kuban P  Karlberg B 《Talanta》1998,45(3):477-484
On-line gas diffusion has been coupled to a capillary electrophoresis system (CE) via a specially designed interface. The sample is merged with a modifying solution, e.g., a strong acid, in a flow system to transform the analytes of interest into their respective gaseous forms. These transformed, gaseous analytes permeate through a PTFE membrane into an acceptor stream comprising of a tris-buffer. The continuously flowing acceptor stream is led into an injector forming an integrated part of a flow injection analysis (FIA) system. The sample receiving carrier stream in the FIA system, a chromate buffer, brings the sample, 50 mul, to the FIA-CE interface into which one end of a separation capillary has been inserted. A small portion of the injected sample enters the capillary (electrokinetic injection) and separation takes place. A UV detector is placed at the other capillary end and a run potential of 25 kV is applied to two platinum electrodes positioned in the flow system. Multiple sample injections can be performed in one uninterrupted electrophoretic run. A typical sampling frequency is 15 h(-1); each run may result in quantitation of at least five anions. The overall repeatability is in the range 1.8-3.6% (RSD). The technique has been applied to the analysis of real samples such as soft drinks, vinegar and wine. Selective discrimination of anions which are unable to form volatile species is accomplished. No off-line sample pre-treatment is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号