首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ultrasonic wave propagation in human cancellous bone is considered. Reflection and transmission coefficients are derived for a slab of cancellous bone having an elastic frame using Biot's theory modified by the model of Johnson et al. [J. Fluid Mech. 176, 379-402 (1987)] for viscous exchange between fluid and structure. Numerical simulations of transmitted waves in the time domain are worked out by varying the modified Biot parameters. The variation is applied to the governing parameters and is about 20%. From this study, we can gain an insight into the sensitivity of each physical parameter used in this theory. Some parameters play an important role in slow-wave wave form, such as the viscous characteristic length lambda and pore fluid bulk modulus Kf. However, other parameters play an important role in the fast-wave wave form, such as solid density rhos and shear modulus N. We also note from these simulations that some parameters such as porosity phi, tortuosity alpha(infinty), thickness, solid bulk modulus Ks, and skeletal compressibility frame Kb, play an important role simultaneously in both fast and slow wave forms compared to other parameters which act on the wave form of just one of the two waves. The sensitivity of the modified Biot parameters with respect to the transmitted wave depends strongly on the coupling between the solid and fluid phases of the cancellous bone. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.  相似文献   

2.
The use of Biot theory for modelling ultrasonic wave propagation in porous media involves the definition of a "critical frequency" above which both fast and slow compressional waves will, in principle, propagate. Critical frequencies have been evaluated for healthy and osteoporotic cancellous bone filled with water or marrow, using data from the literature. The range of pore sizes in bone gives rise to a critical frequency band rather than a single critical frequency, the mean of which is lower for osteoporotic bone than normal bone. However, the critical frequency is a theoretical concept and previous researchers considered a more realistic "viscous frequency" above which both fast and slow waves may be experimentally observed. Viscous frequencies in bone are found to be several orders of magnitude greater than calculated critical frequencies. Whereas two waves may well be observed at all ultrasonic frequencies for water-filled cancellous bone at 20 degrees C, it is probable megahertz frequencies would be needed for observation of two waves in vivo.  相似文献   

3.
The goal of this study is to analyze the statistics of the backscatter signal from bovine cancellous bone using a Nakagami model and to evaluate the feasibility of Nakagami-model parameters for cancellous bone characterization. Ultrasonic backscatter measurements were performed on 24 bovine cancellous bone specimens in vitro and the backscatter signals were compensated for the frequency-dependent attenuation prior to the envelope detection. The statistics of the backscatter envelope were modeled using the Nakagami distribution. Our results reveal that the backscatter envelope mainly followed pre-Rayleigh distributions, and the deviations of the backscatter envelope from Rayleigh distribution decreased with increasing bone density. The Nakagami shape parameter(i.e., m) was significantly correlated with bone densities(R = 0.78–0.81, p 0.001) and trabecular microstructures(|R| = 0.46–0.78, p 0.05). The scale parameter(i.e.,?) and signal-to-noise ratio(SNR) also yielded significant correlations with bone density and structural features. Multiple linear regressions showed that bone volume fraction(BV/TV) was the main predictor of the Nakagami parameters,and microstructure produced significantly independent contribution to the prediction of Nakagami distribution parameters,explaining an additional 10.2% of the variance at most. The in vitro study showed that statistical parameters derived with Nakagami model might be useful for cancellous bone characterization, and statistical analysis has potential for ultrasonic backscatter bone evaluation.  相似文献   

4.
This paper describes preliminary observations of ultrasonic wave propagation in air-saturated defatted cancellous bone from the human vertebra. Using a broadband pulse transmission system, attenuation and phase velocity were measured over a wide frequency range (100 kHz-1 MHz). The observed behaviour was consistent with that expected for the decoupled slow wave predicted by Biot's theory. Velocity was lower than that of free air, and there was marked frequency-dependent attenuation and velocity dispersion. The tortuosity (alpha) of the trabecular microstructure was estimated from the high frequency limit of the dispersion curve, with a mean value of alpha = 1.040 +/- 0.004 obtained in five specimens. Ultrasonic measurements in air represent a valuable new approach, capable of yielding parameters that directly characterise bone structure. Furthermore, they may give useful insights into wave propagation in bone in vivo, where the trabecular framework is saturated with marrow fat rather than air.  相似文献   

5.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown space- and time-dependent Biot number in deep X-ray lithography using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown Biot number; hence, the procedure is classified as the function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space- and time-dependent Biot number can be obtained for the test case considered in this study. PACS 85.40.Hp; 44.05.+e; 46.15.Cc  相似文献   

6.
Thirty-eight slices of pure trabecular bone 1-cm thickness were extracted from human proximal femurs. A pair of 1-MHz central frequency transducers was used to measure quantitative ultrasound (QUS) parameters in transmission [normalized broadband ultrasound attenuation (nBUA), speed of sound (SOS)] and in backscatter [broadband ultrasound backscatter (BUB)]. Bone mineral density (BMD) was measured using clinical x-ray quantitative computed tomography. Site-matched identical region of interest (ROIs) of 7 x 7 mm2 were positioned on QUS and QCT images. This procedure resulted in 605 ROIs for all the specimens data pooled together. The short-term precision of the technique expressed in terms of CV was found to be 2.3% for nBUA, 0.3% for SOS and 4.5% for BUB. Significant linear correlation between QUS and BMD were found for all the 605 ROIs pooled, with r2 values of 0.73, 0.77, and 0.58 for nBUA, SOS, and BUB, respectively (all p < 0.05). For the BUB, the best regression was obtained with a polynomial fit of second order (r2 = 0.63). An analysis of measurements errors was developed. It showed that the residual variability of SOS is almost completely predicted by measurements errors, which is not the case for BUA and BUB, suggesting a role for micro-architecture in the determination of BUA and BUB.  相似文献   

7.
Pulse transmission ultrasound was used to determine the longitudinal wave speed along the direction of trabecular alignment in 32 water-saturated anisotropic tibial bovine cancellous bone samples and in one cortical bone sample also from the bovine tibia. These results are compared to published ultrasound wave-speed data obtained from bovine femoral specimens. Nonlinear regression was used to fit Biot's theory to the data. The correlation coefficient for regression analysis between the experimental ultrasound velocities and the velocities predicted by Biot's theory was r = 0.78.  相似文献   

8.
Hosokawa A 《Ultrasonics》2006,44(Z1):e227-e231
The trabecular frame of cancellous bone has a high degree of porosity, anisotropy and inhomogeneity. The propagation of ultrasonic waves in cancellous bone is significantly affected by the trabecular structure. In this paper, two two-dimensional finite-difference time-domain (FDTD) methods, which were the popular viscoelastic FDTD method for a viscoelastic medium and Biot's FDTD method for a fluid-saturated porous medium, have been applied to numerically analyze the ultrasonic pulse waves propagating through bovine cancellous bone in the directions parallel and perpendicular to the trabecular alignment. The Biot's fast and slow longitudinal waves, which were identified in previous experiments for the propagation parallel to the trabecular orientation, could be analyzed using Biot's FDTD method rather than the viscoelastic FDTD method. For the single wave propagation in the perpendicular direction, on the other hand, the viscoelastic FDTD result was found to be in more good agreement with the experimental result.  相似文献   

9.
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.  相似文献   

10.
Hoyt (1939) and Firsov devised methods in classical mechanics to deduce a central scattering potential from a measured differential effective cross-section in the nonrelativistic case. These methods are here extended to the relativistic case. A detailed analysis of the applicability of all methods has been undertaken for potentials of the form V(r) = ±r–k for sufficiently high energies of the colliding particles. It is found that Hoyt's method is inapplicable in the relativistic case only when the potential represents attraction. A relatively simple method is given for deducing the parameters and k for a monotonic attraction potential that can be approximated by V(r) = –r–k. The method is based on simple arguments concerning the dimensions of the cross-section. It is sufficient to know only two values of the integral cross-section in the same range of angles but at different energies to determine the parameters.  相似文献   

11.
The inverse problem for nonstationary powder combustion in a half-closed volume is considered. A transient was initiated by the abrupt change of the nozzle section. Experiments measured the time dependence of the pressure in a combustion chamber at various ratios of the initial and final nozzle sections. Comparison of the experimental data and the results from solving the direct problem allows one to solve the inverse problem, in other words, to obtain defined information of the characteristics of a combustion chamber, i.e., the characteristic time of chamber evacuation and the powder, i.e., the effective thermal diffusivity.  相似文献   

12.
The cross-spectral density matrix of an electromagnetic beam has been playing increasingly important role in studies of changes of spectra, of coherence and of polarization as the beam propagates. In this paper we derive solution to an inverse problem, which makes it possible to determine the cross-spectral density matrix of the beam in the source plane z=0, from the knowledge of the matrix in any cross-section z=z0>0 in the half-space into which the beam propagates. We apply the result to the theory of so-called Stokes beams, which were introduced not long ago.  相似文献   

13.
Biot's theory for elastic propagation in porous media has previously been shown to be useful for modeling the dependence of phase velocity on porosity in bovine cancellous bone in vitro. In the present study, Biot's theory is applied to measurements of porosity-dependent phase velocity in 53 human calcanea in vitro. Porosity was measured using microcomputed tomography for some samples (n = 23) and estimated based on bone mineral densitometry for the remaining samples (n = 30). The phase velocity at 500 kHz was measured in a water tank using a through-transmission technique. Biot's theory performed well for the prediction of the dependence of sound speed on porosity. The trend was quasilinear, but both the theory and experiment show similar slight curvature. The root mean square error (RMSE) of predicted versus measured sound speed was 15.8 m/s.  相似文献   

14.
We study the set of local fields describing the dynamics of a scalar, massless particle. It turns out that these fields are relatively local to the free, massless, scalar fieldA if the massless particle does not interact. This leads to a simple algebraic characterisation of interacting fields in the above framework.  相似文献   

15.
This paper is devoted to the experimental determination of distinctive macroscopic structural (porosity, tortuosity, and permeability) and mechanical (Biot-Willis elastic constants) properties of human trabecular bones. Then, the obtained data may serve as input parameters for modeling wave propagation in cancellous bones using Biot's theory. The goal of the study was to obtain experimentally those characteristics for statistically representative group of human bones (35 specimens) obtained from a single skeletal site (proximal femur). The structural parameters were determined using techniques devoted to the characterization of porous materials: electrical spectroscopy, water permeametry, and microcomputer tomography. The macroscopic mechanical properties, Biot-Willis elastic constants, were derived based on the theoretical consideration of Biot's theory, micromechanical statistical models, and experimental results of ultrasonic studies for unsaturated cancellous bones. Our results concerning structural parameters are consistent with the data presented by the other authors, while macroscopic mechanical properties measured within our studies are situated between the other published data. The discrepancies are mainly attributed to different mechanical properties of the skeleton frame, due to strong structural anisotropy varying from site to site. The results enlighten the difficulty to use Biot's theory for modeling wave propagation in cancellous bone, implying necessity of individual evaluation of input parameters.  相似文献   

16.
In this paper we show that any static and spherically symmetric anisotropic solution of the Einstein field equations can be thought as a system sourced by certain deformed isotropic system in the context of Minimal Geometric Deformation-decoupling approach. To be more precise, we developed a mechanism to obtain an isotropic solution from any anisotropic solution of the Einstein field equations. As an example, we implement the method to obtain the sources of a simple static anisotropic and spherically symmetric traversable wormhole.  相似文献   

17.
This paper presents an ultrasonic method for measuring the density of liquids with a solid layer separating a reference fluid and a test fluid. By adjusting the frequency of the exciting signal according to the thickness of the layer, it is possible to generate destructive interference of the waves reflected at the first and at the second boundary of the layer. Thus, the layer appears to vanish for the incident waves. The resulting echo signal depends only on the acoustic impedances of the reference fluid and the test fluid and the density which is of interest can be extracted. Short and long-term drifts of the electronics and the ultrasonic transducer implied are eliminated by using the well-known pulse-echo technique with additional frontwave detection.  相似文献   

18.
J.C. Adamowski 《Ultrasonics》2010,50(2):110-115
This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test.  相似文献   

19.
Jae-Young Rho 《Ultrasonics》1996,34(8):777-783
Ultrasonic techniques have been used to measure the elastic properties of bone. Eight human tibiae were used to determine and map the elastic properties of cortical and cancellous bone. The present study shows cortical bone to be at least orthotropic in its material symmetry. The mechanical properties of cortical bone are more homogeneous along the length than around the circumference. The variations in the properties around the quadrant of cortical bone are small, less than 10%, while differences in the properties around the circumference of cancellous bone are more apparent, approximately 5 times those of cortical bone. The elastic properties of cancellous bone exhibited inhomogeneity and some consistency pattern along both the length and the circumference.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号