首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
me3Si? CCl2?Sime2Cl (me ? CH3) läßt sich mit n-buLi (bu ? C4H9) bei–100°C (Lösungsmittel THF/Äther) in me3Si? CCl(Li)? Sime2Cl a überführen. das mit meJ me3Si? CClme? Sime2Cl bildet. Wird a in Abwesenheit eines Abfangreagenzes langsam erwärmt, so bildet sich unter Abspaltung von LiCl (Cl aus der SiCl-Gruppe) über eine reaktive Zwischenstufe des Bicyclobutans b . Die Struktur von b ist durch NMR-Untersuchung, Röntgenstrukturanalyse und Abbaureaktionen gesichert. Mit HBr bzw. CH3OH werden die Si? C-Bindungen der Dreiringe in b gespalten, so daß sich me3Si? CH2? C(Sime2X)2Sime3 (X ? Br, OCH3) bildet. Formation of Organosilicon Compounds. 85. Formation, Reactions, and Structure of 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl)-1,3-disilabicyclo[1, 1, 0]butane me3Si? CCl2? Sime2Cl (me ? CH3) with n-buLi (bu ? C4H9) at –100°C (solvent: THF/ether) yields me3Si? CCl(Li)? Sime2Cl a , which forms me3Si? CClme? Sime2Cl with meI. By warming a slowly in absence of any trapping reagent the bicyclobutane b is obtained via a reactive intermediate under elimination of LiCl (Cl from the SiCl group). The structure of b is established by nmr investigations, X-ray structure determination and chemical derivatisation.  相似文献   

2.
The reaction of bis(trimethylsilyl)aminofluorsilanes, (Me3Si)2NSiF2R (R = CH3 or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition (Me3Si)2NSiF(R)OR′(R′ = CH3, C2H5, C3H7, C6H5). A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethylfluoroethoxysilane. The IR, mass, 1H and 19F NMR spectra of the above-mentioned compounds are reported. ab]Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me3Si)2NSiF2R (R = F, CH3) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me3Si)2NSiF(R)OR′ (R′ = CH3, C2H7, C6H5, C6H5). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)aminomethyl-fluor-äthoxy-silylarnin erhalten werden.Die IR-, Massen-, 1H- und 19F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.  相似文献   

3.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

4.
The Formation of Disilylphosphino-Element Compounds of C, Si, P The reactions of (me3Si)2PLi · OR2 a (OR2 = 1 monoglyme or 2 THF; me = CH3) with CH3Cl, CH2Cl2, ClCH2CH2Cl and ClCH2? C6H5 give the compounds (me3Si)2Pme, (me3Si)2P? CH2? P(Sime3)2, (me3Si)2P? CH2CH2Cl, (me3Si)2P? CH2CH2? P(Sime3)2 and (me3Si)2P? CH2C6H5 respectively. In the same manner a reacts with me2SiCl2 in a molar ratio 1:1 to (me3Si)2P? Sime2Cl and in a molar ratio 2:1 to (me3Si)2P? Sime2? P(Sime3)2 b . The compound b decomposes to [me3SiP? Sime2]2 and (me3Si)3P at 220°C. In the reactions of a with ClP(C6H5)2 and ClPme2 the compounds (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively, are obtained. a reacts with HgCl2 to (me3Si)2P? P(Sime3)2. (me3Si)3P can be cleaved with ClP(C6H5)2 and ClPme2 yielding (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively. The 1H- and 31P-n.m.r. and mass spectroscopic data are reported.  相似文献   

5.
Treatment of (RH2C)2C5H3N-2,6 (R=SiMe3) with BunLi followed by addition of Me3SiCl gave the tetrasilyl pyridine derivative (R2HC)2C5H3N-2,6 1 in high yield. Further lithiation of 1 with BunLi and reaction of the intermediate with PhCN led to the new lithium-1-azaallyl [Li{N(R)C(Ph)C(R)(C5H3N-2,6)(CHR2)}]22, while metallation of the previously described di-lithium compounds [Li{N(R)C(R)CH}2(C5H3-2,6)]Li(tmen)n (R=SiMe3, R=But, n=1 or R=SiMe3, R=Ph, n=2) with PdCl2(PhCN)2 yielded the novel metallacycles [Pd{{N(H)(R)C(R)CH}{N(SiMe2CH2)C(R)CH}C5H3N-2,6}] 3 (R=But) and [Pd{{N(R)C(R)CH}{N(R)(H)C(R)CH}C5H3N-2,6}2] (R=Ph) 4 in moderate to low yield. Compound 3 is unusual in being the first example of a crystallographically characterised PdNSiC heterocycle which is believed to be formed via an intramolecular CH-activation of a trimethylsilyl group by Pd(II). All four compounds were fully characterised by NMR-spectroscopy, microanalysis (not 4) and X-ray diffraction.  相似文献   

6.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

7.
The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

8.
Summary. The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

9.
Reactions of [(me3Si)2P]2PLi with Chlorophosphanes [(me3Si)2P]2PLi 1 with (C6H5)2PCl yields only a small amount of the expected [(me3Si)2P]2P–P(C6H5)2 2 ; the main products are (me3Si)2P–P(C6H5)2 3 and (C6H5)2P–P(C6H5)2 4 besides some (me3Si)3P 5 and (C6H5)2P–Sime3 6. 3 and 4 result from the metallation of (C6H5)2PCl by 1 t-buPCl2 and 1 form the P3-ring (me3Si)(me3C)P3[P(Sime3)2] 9 as main product besides some [(me3Si)2P]2P–Sime3 7 and 5. 9 is afforded by elimination of me3SiCl, from the initially formed unstable [(me3Si)2P]2P–P(Cl)Cme3 10 . Similarly 1 and PCl3 yield mainly the P3-ring (me3Si)(Cl)P3 · [P(Sime3)2] 11 due to elimination of me3SiCl from [(me3Si)2P]2P–PCl2.  相似文献   

10.
Formation of Organosilicon Compounds. 67. Studies of Metallorganic Synthesis of Si-methylated and C-chlorinated Carbosilanes Using Chlorocarbenoids Synthesis and reactions of C6H5me2Si? CCl2H (A), (H5C6me2Si)2CCl2 (B), and me2Si(CCl2H)2 (C) were investigated in order to find conditions for the synthesis of C-functional carbosilanes via chlorocarbenoids. (A) and (B) react with n-butyl-Li(buLi) (?100°C/THF/ether/pentane) yielding H5C6me2Si? CCl2Li and (H5C6me2Si)CClLi, respectively. These lithium reagents form (B) and(H5C6me2Si)3CCl with H5C6me2SiCl. In the reaction of (H5C6me2Si)3CCl with lithium (H5C6me2Si)3CLi (D) is obtained. (D) forms with H2O/HCl the compound (H5C6me2Si)3CH which is cleaved by HBr yielding (Brme2Si)3CH. (C) gives LiCCl2? Sime2(CCl2H) with buLi (molar ratio 1:1) in a low temperature reaction. Clme2Si? CCl2? Sime2(CCl2H) is formed in the reaction of LiCCl2? Sime2? CCl2H with Sime2CCl2 (yield >90%). Reacting (C) and buLi (1:3) and treating this solution with Sime2CI2 gives (ClSime2)2C?CH Sime2Cl (>85%) via a monosilacyclopropane intermediate. In the inverse reaction, if (C) is added to buLi, (HCCl2)me2SiC?Sime2(CCl2H) is one of the isolated reaction products. If buLi is added to (C) (2:l) and this solution is treated with Sime3Cl, compounds me3Si? CCL2? Sime2? CCL2H, me3Si? CClH? Sime2(CCl2H), (me3Si? CC12)2Sime2, me3Si? CHCI? Sime2? CC12? Sime3 are isolated. The same products were obtained in the reaction of me3Si? CCl2? Sime2? CCl2H with buLi and me3SiCl.  相似文献   

11.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

12.
A series of group 4 metal complexes bearing amine‐bis(phenolate) ligands with the amino side‐arm donor: (μ‐O)[Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)2ZrCl]2 ( 1a ), R2N(CH2)2N(CH2‐2‐O‐3‐R1‐5‐R2‐C6H2)2TiCl2 (R = Me, R1, R2 = tBu ( 2a ), R = iPr, R1, R2 = tBu ( 2b ), R = iPr, R1 = tBu, R2 = OMe ( 2c )), and Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)(CH2‐2‐O‐C6H4)TiCl2 ( 2d ) are used in ethylene and propylene homopolymerization, and ethylene/1‐octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo‐ and copolymerization giving linear polyethylene with high to ultra‐high molecular weight (600·× 103–3600·× 103 g/mol). The activity of 1a /Al(iBu)3/Ph3CB(C6F5)4 shows a positive comonomer effect, leading to over 400% increase of the polymer yield, while the addition of 1‐octene causes a slight reduction of the activity of the complexes 2a‐2d . The complexes with the NMe2 donor group ( 2a , 2d , 1a ) display a high ability to incorporate a comonomer (up to 9–22 mol%), and the use of a bulkier donor group, N(iPr)2 ( 2b , 2c ), results in a lower 1‐octene incorporation. All the produced copolymers reveal a broad chemical composition distribution. In addition, the investigated complexes polymerized propylene with the moderate ( 1a , 2a ) to low ( 2b‐2d ) activity, giving polymers with different microstructures, from purely atactic to isotactically enriched (mmmm = 28%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2467–2476  相似文献   

13.
Acyl- and Alkylidenephosphanes. XXXV. Bis[ N -(trimethylsilyl)iminobenzoyl]phosphanides of Lithium and Zinc – Syntheses as well as NMR Spectroscopic, Structural, and Quantumchemical Studies From the reaction of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide with two equivalents of benzonitrile in 1,2-dimethoxyethane, the yellow dme complex ( 2 a ) of lithium bis[N-(trimethylsilyl)iminobenzoyl]phosphanide ( 2 ) was obtained in 69% yield. However, the intermediate {1-[N-lithium-N-(trimethylsilyl)amido]benzylidene}trimethylsilylphosphane ( 1 ), formed by an analogous 1 : 1 addition in diethyl ether, turned out to be unstable and as a consequence could be characterized by nmr spectroscopic methods only; attempts to isolate the compound failed, but small amounts of the neutral complex 2 b , with the ligands benzonitrile and tetrahydrofuran coordinated to lithium, precipitated. The reaction of compound 2 with zinc(II) chloride in diethyl ether gives the orange-red spiro-complex zinc bis{bis[N-(trimethylsilyl)iminobenzoyl]phosphanide} ( 3 ); this complex is also formed from bis[N-(trimethylsilyl)iminobenzoyl]phosphane ( 4 ), easily amenable by a lithium hydrogen exchange of 2 a with trifluoroacetic acid [18], and zinc bis[bis(trimethylsilyl)amide]. As derived from nmr spectroscopic studies and x-ray structure determinations, compounds 2 a {δ31P +63.3 ppm; P21/n; Z = 4; R1 = 0.067}, 2 b {δ31P +63.3 ppm; P21/c; Z = 4; R1 = 0.063}, 3 {δ31P +58.2 ppm; C2/c; Z = 4; R1 = 0.037} and 4 {δ31P +58.1 ppm [18]} exist as cyclic 3-imino-2λ3σ2-phosphapropenylamides and -propenylamine, respectively, in solution as well as in the solid state. Unlike hydrogen derivative 4 the bis[N-(trimethylsilyl)iminobenzoyl]phosphanide fragments N,N′-coordinating either a lithium or a zinc cation are characterized by almost completely equalized bond lengths; typical mean distances and angles are: PC 180.3 and 178.7; CN 130.5 and 131.8; N–Si 175.3 and 179.3; N–Li 202.3; N–Zn 203.5 pm; CPC 108.8° and 110.5°; PCN 130.9° and 132.9°; CN–Li 113.0°, CN–Zn 117.4°; N–Li–N 104.6°; N–Zn–N 108.8°. Alterations in the shape of the six membered chelate rings, caused by an exchange of the 3-imino-2λ3σ2-phosphapropenylamide or related 2λ3σ2-phospha-1,3-dionate units for the corresponding phosphorus free ligands, are discussed in detail. The results of quantumchemical DFT-B3LYP calculations coincide very well with the experimentally obtained findings.  相似文献   

14.
Titanium(IV) complexes of the general formula TiL(OPr i )2 [where LH2 = R CH3 where R = ─C6H5, ─C6H4Cl(p)] were prepared by the interaction of titanium isopropoxide with sterically hindered Schiff bases derived from heterocyclic β -diketones in 1:1 molar ratio in dry benzene. The complexes TiL(OPr i )2 were used as versatile precursors for the synthesis of other titanium(IV) complexes. Titanium(IV) complexes of the type TiLL'(OPr i ) (where L'H═R1R2C═NOH, R1 = R2 = ─CH3; R1 = ─CH3,R2 = ─C6H5; R1 = ─COC6H5, R2 = ─C6H5) were synthesized by the reaction of TiL(OPr i )2 with ketooximes (L'H) in equimolar ratio in dry benzene. Another type of titanium(IV) complexes having the general formula TiLGH(OPr i ) (where GH2═HO─G─OH, G = ─CH2─CH2─) have been prepared by the reaction of TiL(OPr i )2 with glycol in 1:1 molar ratio in dry benzene. Plausible structures of these new titanium(IV) complexes have been proposed on the basis of analytical data, molecular weight measurements, and spectral studies.  相似文献   

15.
Fluorine Exchange in Trifluorophosphine Metal Complexes. IX1. (Reactions of Tetrakis(trifluorophosphine)nickel(0) with Alkyl(trimethylsilyl)amines and Amides2) Alkylaminodifluorophosphine complexes Ni(PF3)4-n(PF2NHR)n (n = 1, 2, 3) 8–11 and Me3SiF are obtained, if alkyl(trimethylsilyl)amines NHR(SiMe3) (R?CH3 and n-C4H9) are reacted with Ni(PF3)4 ( 1 ). The mechanism of these peripheric reactions is discussed by assuming a four centered type intermediate. However reactions of 1 with the lithium amides LiNR(SiMe3) (R = CH3, C2H5, n-C4H9, and C6H5) yield LiF and the difluorotrimethylsilylaminophosphine complexes Ni(PF3)4-n[PF2NR(SiMe3)]n (n = 1, 3, 4) 12–18 .  相似文献   

16.
Formation of Organosilicon Compounds. LVIII. Synthesis of a Carbosilane with Propellane Structure 1 (· ? C resp. CH2; x ? Si(CH3)2 resp. Si) is formed by a coupling reaction of BrSi(CH2? Sime2? CH2? Sime2Br)3 2 with CCl4 and Li. The reaction of C6H5me2Si? CH2Li with Clme2Si? CH2Br leads to C6H5me2Si? CH2? Sime2? CH2Br. Metallation with lithium and succeeding reaction with Cl3SiC6H5 produces compound C6H5Si(CH2? Sime2? CH2? Sime2C6H5)3, which than forms 2 by cleavage with bromine.  相似文献   

17.
High-resolution 13C and 15N solid-state NMR spectra were recorded for seven crystalline tetraalkyl-thiuram disulfides and their cyclic analogs of the general formula [R2NC(S)S]2 (where R = CH3, C2H5, C3H7, and i-C3H7 or R2 = (CH2)5, (CH2)6, and (CH2)4O). The 15N and 13C NMR resonances were assigned to the particular atoms in the compounds studied. Different isotropic 15N chemical shifts for both dialkyldithiocarbamato groups were interpreted while considering the inductive effects of the alkyl substituents combined with the mesomeric effect of the dithiocarbamato group. X-ray diffraction data were used to refine the molecular structure of bis(cyclohexamethylene)thiuram disulfide and to quantitatively characterize the conformations of the seven-membered N(CH2)6 heterocycles.  相似文献   

18.
The Structures of the Heptahetero-Nortricyclenes P7(Sime3)3 and P4(Sime2)3 Tris(trimethylsilyl)heptaphospha-nortricyclene P7(Sime3)3 1 and Hexamethyl-trisila-tetraphospha-nortricyclene P4Si3me6 2 are structural analogons to the hetero-nortricyclenes P and P4S3. 1 crystallizes in the space group P21 with a = 965.7 pm, b = 1746.5 pm, c = 693.3 pm, β = 99.61° and Z = 2 formula units. In the P7 system tge P? P bond lengths differ functionally, namely 221.4 pm in the three-membered ring, 219.2 pm at the ring atoms and 217.9 pm at the bridgehead atom. The P? Si and Si? C bond lengths are 228.8 pm and 187.8 pm respectively. 2 crystallizes in the space group R3 with aR = 1129.3 pm, αR = 50.01° (hexagonal axes: a = 954.7 pm, c = 2956.9 pm) and Z = 2 formula units. In the P4Si3 systems the bond lengths are P? P = 220.2 pm, P? Si = 228.3 pm and 224.7 pm (to the bridgehead atom). The Si? C bond lengths are 187.3 pm. The structures are discussed with related compounds.  相似文献   

19.
Specific magnetic susceptibilities (s) of several newly synthesized chelates of some of the lanthanons [La(III), Pr(III) and Nd(III)] are reported. These derivatives are of the general type,Ln(O-i-C3H7)3–n (C6H5CHNRO) n [where,Ln=La(III), Pr(III) or Nd(III);n=1 or 2 and R=CH2CH2, CH2CHCH3 or C6H4] and have been prepared by the reaction of the alkoxides of the lanthanons withSchiff bases such as benzylidene-2-hydroxyethylamine (C6H5CHNCH2CH2OH), benzylidene-2-hydroxy-n-propylamine (C6H5CHNCH2CHOHCH3) and benzylidene-o-aminophenol (C6H5CHNC6H4OH) in different molar relations in dry benzene.The resulting crystalline derivatives are non-volatile, light to deep yellow or blackish in colour. These tend to polymerize on keeping as shown by their insoluble nature and higher melting points, the polymerisation possibly occurring by the intermolecular coordination through oxygen atoms as reported earlier1.UsingGouy method2, the bis-isopropoxy mono-Schiff base and mono-isopropoxy bis-Schiff base complexes of La(III) have been shown to be diamagnetic, with s values being in the range of –0.32 to –0.45×10–6 and –0.39 to –0.55×10–6 c.g.s. units at 305 K respectively.In the remaining derivatives, Pr(O-i-C3H7)3–n (C6H5CH NRO) n and Nd(O-i-C3H7)3–n (C6H5CHNRO) n (where,n=1 or 2 and R=CH2CH2, CH2CHCH3 or C6H4) the magnetic moment values range between 3.25 to 3.32 and 3.30 to 3.33 B respectively indicating their paramagnetic nature.  相似文献   

20.
Formation of organosilicon compounds. 84. Synthesis and thermal rearrangement of some substituted linear and cyclic silanes In part IR we report on the synthesis of substituted silanes, and in part II on their thermal rearrangement. I: me3i--Sime3(me = CH3) is formed by dropwise addition of THF to a suspension of Li powder in me3SiCl; yield ~ 80%. The mixture me3Si--Sime2Cl, me3SiCl, Li powder and THF reacts analogously to form me2Si(Sime3)2; yield 80%. By the same type of reaction the following compounds are obtained: compound 1 from Brme2Si? CH2? Sime2Br, 1 from Brme2Si? CH2? Sime2Br, 2 from Brme2Si? Sime2? CH2? Sime2Br 16 and 3 from Bret2Si? CH2? CH2? Siet2Br (et = C2H5). 2 decomposes during its isolation from THF. 16 is formed from phme2Si? Sime2? CH2? Sime2ph 17 (ph = C6H5) by reaction with HBr, 17 either from phme2SiLi and Clme2SiCH2Cl or from phme2Si? Sime2Br and LiCH2? Sime2ph. II: me2Si(Sime3)2 rearranges at 440 °C (56 h) with insertion of the CH2 group (Si? H formation) into the Si? Si bond and the formation of me3Si? Sime2? CH2? Sime2H, me2HSi? CH2? Sime2? CH2? SiHme2, and me3Si? CH2? Sime? CH2? Sime2H. 1 reacts analogously. Methylated halogenated disilanes like Brme2Si? Sime2Br react with separation of: Sime2 and its insertion into the Si-halogen bond to form trisilanes. Different from both are the phenylated derivatives, though phme2Si? Sime2ph still forms phme2Si? Sime2? Sime2ph. 3 reacts with separation of C2H4, formation of the Si? H group and insertion of C2H4 into the Si? Si bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号