首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
We report our detailed metal-enhanced phosphorescence (MEP) findings using Rose Bengal at low temperature. Silver Island Films (SiFs) in close proximity to Rose Bengal significantly enhance the phosphorescence emission intensity. In this regard, a 5-fold brighter phosphorescence intensity of Rose Bengal was observed from SiFs as compared to a glass control sample at 77 K. In addition, several factors affecting MEP, such as distance dependence and silver film morphology, were also investigated. Our findings suggest that both singlet and triplet states can couple to surface plasmons and enhance both fluorescence and phosphorescence yields. This finding suggests that MEP can be used to promote triplet-based assays, such as those used in photodynamic therapy.  相似文献   

2.
We report here the use of plasmonic metal nanostructures in the form of silver island films (SiFs) to enhance the fluorescence emission of five different phycobiliproteins. Our findings clearly show that the phycobiliproteins display up to a 9-fold increase in fluorescence emission intensity, with a maximum 7-fold decrease in lifetime when they are assembled as a monolayer above SiFs, as compared to a monolayer assembled on the surface of amine-terminated glass slides of the control sample. The study was also repeated with a thin liquid layer of the phycobiliproteins sandwiched between two glass substrates (and a SiFs and a glass substrate) clamped together. Similarly, the results show a maximum 10-fold increase in fluorescence emission intensity coupled with a 2-fold decrease in lifetime of the phycobiliproteins in the SiF-glass setup as compared to the glass control sample, implying that near-field enhancement of phycobiliprotein emission can be attained both with and without chemical linkage of the proteins to the SiFs. Hence, our results clearly show that metal-enhanced fluorescence (MEF) can potentially be employed to increase the sensitivity and detection limit of the plethora of bioassays that employ phycobiliproteins as fluorescence labels, such as in fluoro-immunoassays where the assay can be tethered on the surface of SiFs, and also in flow cytometry where analytes in the liquid phase could potentially flow through channels coated with SiFs without actually being attached to the silver.  相似文献   

3.
4.
In this letter we report the observation of angular-dependent Metal Enhanced Fluorescence (MEF) from fluorophores deposited onto silver island films (SiFs). When illuminated with laser light (473 nm) at angles of 45 and 90 degrees from the surface, SiFs scattered light at wide observation angles biased by the direction of the incident light. We observed angular-dependent MEF (10-fold) from FITC-HSA immobilized onto the SiFs, again slightly biased with respect to the direction of the incident light. We also measured the photostability of FITC from the back of the glass substrate at angles of 225 and 340 degrees.  相似文献   

5.
In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology.  相似文献   

6.
Metal-Enhanced Fluorescence (MEF) effects from different density silver island films (SiFs) and the effects of far-field excitation irradiance on the observed enhancement of fluorescence were studied. It is shown that MEF non-linearly depends on silver nanoparticle (NP) size/density, reaching a maximum value for SiFs made at a deposition time (DT) of ~5 minutes, i.e. just before SiFs become continuous. Numerical simulations of the silver-islands growing on glass revealed that the near-field magnitude depends non-linearly on size and interparticle distance exhibiting dramatic enhancement at ~10 nm distance between the NPs. In addition, a remarkable effect of modulation in MEF efficiency by far-field excitation irradiance has been observed, which can be correlated well with numerical simulations that show an excitation power volume dependence. The near-field volume changes non-linearly with far-field power. This unique observation has profound implications in MEF, which has rapidly emerged as a powerful tool in the biosciences and ultimately allows for tunable fluorescence enhancement factors.  相似文献   

7.
Selected properties of donor–acceptor energy transfer in the presence of surface plasmon coupled emission (SPCE) on metallic nanofilms are demonstrated. These properties of surface plasmon mediated energy transfer (SPMET) are for the first time compared to those of traditional energy transfer (ET) based on the same donor–acceptor system. The presence of plasmons significantly accelerates energy transfer as revealed by the results of fluorescence intensity decay. In particular, the rise time of acceptor fluorescence intensity upon donor excitation is 10 times shorter in the presence of SPCE. It is also observed that contrary to ET the sensibilized acceptor emission in SPMET is totally linearly polarized.  相似文献   

8.
In this letter, we report the first observation of surface plasmon-coupled chemiluminescence (SPCC), where the luminescence from chemically induced electronic excited states couples to surface plasmons in a thin continuous silver film. The SPCC is highly directional and predominantly p-polarized, strongly suggesting that the emission is from surface plasmons instead of the luminophores directly themselves. This indicates that surface plasmons can be directly excited from chemically induced excited states. With a wealth of assays that employ chemiluminescence based detection currently in use, then our findings suggest new chemiluminescence sensing strategies based on localized, directional and polarized chemiluminescence detection.  相似文献   

9.
In reports over the past several years, we have demonstrated the efficient collection of optically excited fluorophore emission by its coupling to surface plasmons on thin metallic films, where the coupled luminescence was highly directional and polarized. This phenomenon is referred to as surface plasmon-coupled emission (SPCE). In this current study, we have extended this technique to include chemiluminescing species and subsequentially now report the observation of surface plasmon-coupled chemiluminescence (SPCC), where the luminescence from chemically induced electronic excited states couples to surface plasmons in thin continuous metal films. The SPCC is highly directional and predominantly p-polarized, strongly suggesting that the emission is from surface plasmons instead of the luminophores themselves. This indicates that surface plasmons can be directly excited from chemically induced electronic excited states and excludes the possibility that the plasmons are created by incident excitation light. This phenomenon has been observed for a variety of chemiluminescent species in the visible spectrum, ranging from blue to red, and also on a variety of metals, namely, aluminum, silver, and gold. Our findings suggest new chemiluminescence sensing strategies on the basis of localized, directional, and polarized chemiluminescence detection, especially given the wealth of assays that currently employ chemiluminescence-based detection.  相似文献   

10.
The pursuit of nanoscale photonics and molecular optoelectronics has stimulated a lot of interests in scanning tunneling microscope (STM) induced molecular emission. In this work, we have introduced a full quantum mechanical approach instead of the previous semiclassical theory to consider the quantized surface plasmon modes in this system. By considering the mutual interactions between a single molecule and the quantized surface plasmon, we have studied the molecular electroluminescence from STM tunnel junctions. Due to the coupling to the surface plasmons, the spontaneous emission rate and the fluorescence intensity of themolecule are both enormously enhanced. In particular, we show that when the radiative decay rate becomes comparable to the vibrational damping rate, hot-electroluminescence can be observed. All these findings are believed to be instructive for further developments of both molecular electronics and photonics.  相似文献   

11.
Laser induced fluorescence spectroscopy of free-base (H(2)Pc) and zinc (ZnPc) phthalocyanines trapped in rare gas and nitrogen matrices reveals a quite unexpected phenomenon with a moderate increase in the laser intensity. In all matrices except Xe, a huge increase occurs in the intensity of an emission band near 755 nm when pumping the S(1) <-- S(0) transition. The band involves a vibrational mode of the ground state, located at 1550 and 1525 cm(-1) for H(2)Pc and ZnPc, respectively. Many of the characteristics of amplified emission (AE) are exhibited by this vibronic transition. Excitation scans recorded for the AE band yield greatly enhanced site selectivity compared to what is obtained in normal fluorescence excitation scans.  相似文献   

12.
We studied surface plasmon-coupled emission (SPCE) of semiconductor quantum dots (QDs). These QDs are water-soluble ZnS-capped CdSe nanoparticles stabilized using lysine cross-linked mercaptoundecanoic acid. The QDs were spin-coated from 0.75% PVA solution on a glass slide covered with 50 nm of silver and a 5-nm protective SiO(2) layer. Excited QDs induced surface plasmons in a thin silver layer. Surface plasmons emitted a hollow cone of radiation into an attached hemispherical glass prism at a narrow angle of 48.5 degrees. This directional radiation (SPCE) preserves the spectral properties of QD emission and is highly p-polarized irrespective of the excitation polarization. The SPCE spectrum depends on the observation angle because of the intrinsic dispersive properties of SPCE phenomenon. The remarkable photostability can make QDs superior to organic fluorophores when long exposure to the intense excitation is needed. The nanosize QDs also introduce a roughness near the metal layer, which results in a many-fold increase of the coupling of the incident light to the surface plasmons. This scattered incident illumination transformed into directional, polarized radiation can be used simultaneously with SPCE to develop devices based on both quantum dot emission and light scattered from surface plasmons on a rough surface.  相似文献   

13.
Fluorescence excitation and emission spectra are reported for the polyene macrolide antifungal agent Amphotericin B formulated as micellar dispersion Fungizone (FZ) and its modified counterpart heat-treated Fungizone. The addition of sodium dodecyl sulfate or sodium deoxycholate surfactant to modulate the aggregation state of Amphotericin B confirms that the monomer and dimer states have different fluorescence spectra. Energy transfer from excited dimer to monomer is observed. Both FZ and heat-treated FZ (HTFZ) show expected S1 --> S0 fluorescence emission as well as anti-Kasha fluorescence emission from the S2 state. The excitation and S1 --> S0 emission spectra of HTFZ are similar to those of FZ, while the S2 --> S0 fluorescence differs in intensity between them. The variation in the rate constant for internal conversion from S2 to S1 as the surfactant concentration is increased differs for FZ and HTFZ; we propose that this may form a new basis for examining the super-aggregated character of AmB preparations. FZ and HTFZ have a similar stability to disaggregation by added sodium dodecyl sulfate surfactant. These findings provide the groundwork for future fluorescence characterization of FZ or HTFZ interactions with cell membranes.  相似文献   

14.
This contribution presents fluorescence measurements from highly diluted tetratolylporphyrin (TTP) solutions where acetone has been chosen as solvent. The concentrations of the solutions ranged from 10(-8) to 10(-14) M. Apart the normal S1-S0 fluorescence a new broad emission was recorded below 10(-8) M. This new emission blue-shifted to the S1-S0 fluorescence covered the spectral range between 19000 and 14000 cm(-1). Within the dilution series, both the S1-S0 porphyrin fluorescence and the new emission exhibited a remarkably non-linear concentration-dependence. In the case in which the aggregate emission was strong, little S1-S0 emission could be detected and vice versa. The intensity maximum of the broad emission was detected from a 10(-13) M solution. The supplementary fluorescence was attributed to the presence of assembled molecules. This assumption was established by comparing the measurements with those obtained from 1:1 acetone water solvent mixtures in which the formation of aggregates had been formerly proven. The emission originating from the formation of aggregates was interpreted by a qualitative model considering the energy levels of J-aggregated porphyrins.  相似文献   

15.
Fluorescence excitation spectra of dibenzofuran in a supersonic jet are observed and the vibronic structure is analyzed for the S(1) (1)A(1) (pipi) and S(0) states. An observation of the rotational envelopes reveals that the band is a B-type band. However, it is shown that most of the strong vibronic bands are A-type bands. The intensity arises from vibronic coupling with the S(2) (1)B(2) state. We find a broad emission in the dispersed fluorescence spectrum for the excitation of the high vibrational levels in the S(1) state. This indicates that intramolecular vibrational redistribution (IVR) occurs efficiently in the isolated dibenzofuran molecule.  相似文献   

16.
A novel and versatile route for fabricating flame‐retardant microcapsules via microfluidics technology is reported. The flame‐retardant microcapsules were prepared with a dimethyl methylphosphonate (DMMP) core and an ultraviolet‐curable (UV‐curable) polysiloxane shell. Furthermore, a UV‐curable polysiloxane was synthesized. The synthesis mechanism of UV‐curable polysiloxane and the curing mechanism of flame‐retardant microcapsules were analyzed. To verify that DMMP was encapsulated in the microcapsules, X‐ray fluorescence was used before and after microencapsulation. The resulting microcapsules were well monodispersed and exhibited a good spherical shape with a smooth surface. In addition, the size of the microcapsules decreased dramatically with an increasing flow‐rate ratio of the middle‐/inner‐phase or outer‐phase flow rate. The thermal stability of the microcapsules was worse than shell materials but superior to DMMP. Silicone foams (SiFs) with microcapsules prepared using a dehydrogenation method achieved a relatively higher limiting oxygen‐index value than the pure SiF, which indicated that the microcapsules could enhance the flame retardation of SiFs effectively. Because of the polysiloxane shell, the microcapsules had good compatibility with SiFs, and the influence of microcapsules on the mechanical properties of SiFs was unremarkable.  相似文献   

17.
The enzyme cofactors are intrinsically fluorescent and participate directly in the single molecule enzymology studies. Due to photobleaching, one cannot follow kinetics continuously by cofactor fluorescence for more than several minutes typically. Modification of spectral properties of fluorophores, such as the amplification of emission intensity, can be achieved through coupling with surface plasmons in close proximity to metallic nanostructures. This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including bioassays, sensor technology, microarrays, and single-molecule studies. Here, we demonstrated up to a 100-fold increase in the emission of the single cofactors and flavoenzymes near silver nanostructures. Amplified fluorescence of different types of flavins and flavoenzymes has been interpreted by using time-resolved single molecule fluorescence data. The results show considerable promise for the studies of enzyme kinetics using the intrinsic fluorescence from the cofactors.  相似文献   

18.
On spectral relaxation in proteins   总被引:5,自引:0,他引:5  
During the past several years there has been debate about the origins of nonexponential intensity decays of intrinsic tryptophan (trp) fluorescence of proteins, especially for single tryptophan proteins (STP). In this review we summarize the data from diverse sources suggesting that time-dependent spectral relaxation is a ubiquitous feature of protein fluorescence. For most proteins, the observations from numerous laboratories have shown that for trp residues in proteins (1) the mean decay times increase with increasing observation wavelength; (2) decay associated spectra generally show longer decay times for the longer wavelength components; and (3) collisional quenching of proteins usually results in emission spectral shifts to shorter wavelengths. Additional evidence for spectral relaxation comes from the time-resolved emission spectra that usually shows time-dependent shifts to longer wavelengths. These overall observations are consistent with spectral relaxation in proteins occurring on a subnanosecond timescale. These results suggest that spectral relaxation is a significant if not dominant source of nonexponential decay in STP, and should be considered in any interpretation of nonexponential decay of intrinsic protein fluorescence.  相似文献   

19.
Dynamics of the excited singlet (both the S2 and S1) states of a ketocyanine dye, namely, 2,5-bis[(2,3-dihydroindolyl)-propylene]-cyclopentanone (KCD), have been investigated in different kinds of media using steady-state absorption and emission as well as femtosecond transient absorption spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation of KCD to its second excited singlet state, reveal dual fluorescence (emission from both the S2 and S1 states) behavior. Although the intensity of the S2 --> S0 fluorescence is weaker than that of the S1 --> S0 fluorescence in solutions at room temperature (298 K), the former becomes as much as or more intense than the latter in rigid matrixes at 77 K. The lifetime of the S2 state is short and varies between 0.2 and 0.6 ps in different solvents. After its creation, the S2 state undergoes two simultaneous processes, namely, S2 --> S0 fluorescence and S2 --> S1 internal conversion. Time-resolved measurements reveal the presence of an ultrafast component in the decay dynamics of the S1 state. A good correlation between the lifetime of this component and the longitudinal relaxation times (tauL) of the solvents suggests that this component arises due to solvation in polar solvents. More significant evolution of the spectroscopic properties of the S1 state in alcoholic solvents in the ultrafast time domain has been explained by the occurrence of the repositioning of the hydrogen bonds around the carbonyl group in the excited state of KCD. In 2,2,2-trifluoroethanol, a strongly hydrogen bond donating solvent, it has even been possible to establish the existence of two distinct forms of the S1 state, namely, the non-hydrogen-bonded (or free) molecule and the hydrogen-bonded complex.  相似文献   

20.
IR emission from NO2 cooled in a supersonic jet and excited to a single, B 2B1 state rovibronic level at 22 994.92 cm(-1) above the ground-state zero point was detected with 10(-8)-s time resolution. The IR emission together with the laser-induced fluorescence decay measurement allows the deduction of the relaxation dynamics near the dissociation of NO2. Following the excitation this single rovibronic B 2B1 level decays on 1.0-s time scale primarily through electronic radiation. Collisions induce internal conversion with a rate constant of 3.0 x 10(7) Torr(-1) s(-1) to the mixed AX states. Collisions further induce internal conversion of the AX mixed states into highly vibrationally excited levels in the X states with a rate constant at least one order of magnitude slower. This mechanism results in the observation of a double-exponential decay in the laser-induced fluorescence and a rise in the IR emission intensity corresponding to the fast decay in the fluorescence intensity. The IR emission rate of the highly vibrationally excited X-state levels is estimated to be about one order of magnitude larger than the isoenergetic AX mixed states and much larger than the B 2B1 level, both with much less vibrational excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号