首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The authors present a BiCMOS dynamic multiplier, which is free from race and charge-sharing problems, using Wallace tree reduction architecture and 1.5-V full-swing BiCMOS dynamic logic circuit. Based on a 1-μm BiCMOS technology, a 1.5-V 8×8 multiplier designed, shows a 2.3× improvement in speed as compared to the CMOS static one  相似文献   

2.
A low voltage full-swing BiCMOS bootstrapping technique that allows the design of BiCMOS logic circuits at supply voltages down to 1.5 V is presented. This is the first 1.5-V design technique that does not require complementary bipolar devices. The technique is shown to have significant advantages over existing low voltage BiCMOS logic designs in sub-3 V operation. Inverter gates fabricated using a 0.8-μm technology were operated at 150 MHz with a supply voltage of 1.5 V. Implementation of this technique on dynamic logic is also demonstrated and experimental results match closely with simulation  相似文献   

3.
This paper presents a 1.5 V full-swing BiCMOS dynamic logic gate circuit, based on a dynamic pull-down BiPMOS configuration, suitable for VLSI using low-voltage BiCMOS technology. With an output load of 0.2 pf, the 1.5 V full-swing BiCMOS dynamic logic gate circuit shows a more than 1.8 times improvement in speed as compared to the CMOS static one  相似文献   

4.
Two new bipolar complementary metal-oxide-semiconductor (BiCMOS) differential logic circuits called differential cross-coupled bootstrapped BiCMOS (DC2B-BiCMOS) and differential cross-coupled BiCMOS (DC2-BiCMOS) logic are proposed and analyzed. In the proposed two new logic circuits, the novel cross-coupled BiCMOS buffer circuit structure is used to achieve high-speed operation under low supply voltage. Moreover, a new bootstrapping technique that uses only one bootstrapping capacitor is adopted in the proposed DC2B-BiCMOS logic to achieve fast near-full-swing operation at 1.5 V supply voltage for two differential outputs. HSPICE simulation results have shown that the new DC2B-BiCMOS at 1.5 V and the new DC2-BiCMOS logic at 2 V have better speed performance than that of CMOS and other BiCMOS differential logic gates. It has been verified by the measurement results on an experimental chip of three-input DC2B-BiCMOS XOR/XNOR gate chain fabricated by 0.8 μm BiCMOS technology that the speed of DC2-BiCMOS at 1.5 V is about 1.8 times of that of the CMOS logic at 1.5 V. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed DC2B-BiCMOS and DC2-BiCMOS logic circuits are feasible for low-voltage, high-speed applications  相似文献   

5.
A 45-Gb/s BiCMOS decision circuit operating from a 2.5-V supply is reported. The full-rate retiming flip-flop operates from the lowest supply voltage of any silicon-based flip-flop demonstrated to date at this speed. MOS and SiGe heterojunction-bipolar-transistor (HBT) current-mode logic families are compared. Capitalizing on the best features of both families, a true BiCMOS logic topology is presented that allows for operation from lower supply voltages than pure HBT implementations without compromising speed. The topology, based on a BiCMOS cascode, can also be applied to a number of millimeter-wave (mm-wave) circuits. In addition to the retiming flip-flop, the decision circuit includes a broadband transimpedance preamplifier to improve sensitivity, a tuned 45-GHz clock buffer, and a 50-/spl Omega/ output driver. The first mm-wave transformer is employed along the clock path to perform single-ended-to-differential conversion. The entire circuit, which is implemented in a production 130-nm BiCMOS process with 150-GHz f/sub T/ SiGe HBT, consumes 288 mW from a 2.5-V supply, including only 58 mW from the flip-flop.  相似文献   

6.
The authors describe two low-voltage switched-capacitor (SC) filters: one can operate from a minimum supply of 1.5 V and the other from a minimum supply of 2 V (for typical parameter values). Both filters use a fully differential architecture and are fabricated in a standard BiCMOS technology. The lowest supply filter, operated from a 2-V supply, has an SNR (signal-to-noise ratio) of 92 dB and a THD (total harmonic distortion) of -70 dB for a 2.4-Vpp differential signal. Power consumption and area per pole are 60 μW and 0.18 mm2, respectively, with a clock frequency of 447 kHz. The realized filters can be used as building blocks to implement more complex functions, like the active synthesis of a given impedance in line-fed telecom systems  相似文献   

7.
A 0.3-μm 4-Mb BiCMOS SRAM with a 6-ns access time at a minimum supply voltage of 1.5 V has been developed. Circuit technologies contributing to the low-voltage, high-speed operations include: (1) boost-BiNMOS gates for address decoding circuits; (2) an optimized word-boost technique for a highly-resistive-load memory cell; (3) a stepped-down CML cascoded bipolar sense amplifier; (4) optimum boost-voltage detection circuits with dummies for boost-voltage generators  相似文献   

8.
This paper reports a 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit using two bootstrap capacitors to enhance the switching speed for low-voltage CMOS VLSI. For a supply voltage of 1.5 V, the full-swing bootstrapped CMOS driver circuit shows a 2.2 times improvement in switching speed in driving a capacitive load of 10 pF as compared to the conventional CMOS driver circuit. Even for a supply voltage of 1 V, this full-swing bootstrapped CMOS large capacitive-load driver circuit is still advantageous  相似文献   

9.
Yeh  C.C. Lou  J.H. Kuo  J.B. 《Electronics letters》1997,33(16):1375-1376
A 1.5 V full-swing energy efficient logic circuit is reported that is suitable for next-generation low-power VLSI applications using a low supply voltage. At 25 MHz and at 1.5 V, the power consumption of the EEL circuit is 70% of that for an ECRL circuit and 47% of that for the static circuit  相似文献   

10.
A novel BiCMOS logic circuit is described that provides highspeed rail-to-rail operation with only one battery cell (1-1.5 V). The proposed circuit utilises a novel pull-down scheme that involves bootstrapping the base of the pull-down p-n-p bipolar junction transistor to a negative potential during the pull-down transient period. Circuit simulations have shown that the proposed circuit outperforms the transient-saturation full-swing BiCMOS and the bootstrapped bipolar circuits in terms of delay, power and cross-over capacitance for all simulated supply voltages  相似文献   

11.
A BiCMOS logic circuit with very small input capacitance has been developed, which operates at low supply voltages. A High-beta BiCMOS (Hβ-BiCMOS) gate circuit which fully utilizes the bipolar transistor features achieves 10 times the speed of a CMOS gate circuit with the same input capacitance and operating at 3.3 V supply voltage. In order to lower the minimum supply voltage of Hβ-BiCMOS, a BiCMOS circuit configuration using a charge pump to pull up the output high level of the BiCMOS gate circuit is proposed. By introducing a BiCMOS charge pump, Hβ-BiCMOS achieves very high speed operation at sub-2.0 V supply voltage. It has also been demonstrated that only a very small number of charge pump circuits are required to drive a large number of Hβ-BiCMOS gate circuits  相似文献   

12.
New high-speed BiCMOS current mode logic (BCML) circuits for fast carry propagation and generation are described. These circuits are suitable for reduced supply voltage of 3.3-V. A 32-b BiCMOS carry select adder (CSA) is designed using 0.5-μm BiCMOS technology. The BCML circuits are used for the correct carry path for high-speed operation while the rest of the adder is implemented in CMOS to achieve high density and low power dissipation. Simulation results show that the BiCMOS CSA outperforms emitter coupled logic (ECL) and CMOS adders  相似文献   

13.
A novel BiCMOS full-swing circuit technique with superior performance over CMOS down to 1.5 V is proposed. A conventional noncomplementary BiCMOS process is used. The proposed pull-up configuration is based on a capacitively coupled feedback circuit. Several pull-down options were examined and compared, and the results are reported. Several cells were implemented using the novel circuit technique; simple buffers, logic gates, and master-slave latches. Their performance, regarding speed, area, and power, was compared to that of CMOS for different technologies and supply voltages. Both device and circuit simulations were used. A design procedure for the feedback circuit and the effects of scaling on that procedure were studied and reported  相似文献   

14.
The authors discuss the merged BiCMOS (MBiCMOS) gate, a unique circuit configuration to improve BiCMOS gate performance at low supply voltages. MBiCMOS maintains a measured delay and power-delay advantage over CMOS into the 2-V supply range, in a simple four-device gate that does not require any change in the standard BiCMOS processing sequence. In a 2-μm technology, MBiCMOS outperforms CMOS down to a 2.6-V supply. Gates designed for fabrication in a 0.5-μm technology and simulated using measured device parameters indicate that MBiCMOS can be used to extend the performance crossover voltage to below 2 V in the submicrometer regime. A full-swing version of the MBiCMOS gate (FS-MBiCMOS) is introduced. Simulations of 2-μm gates show FS-MBiCMOS/CMOS performance crossover voltages of 2.2 V  相似文献   

15.
Novel full-swing BiCMOS/BiNMOS logic circuits using bootstrapping in the pull-up section for low supply voltage down to 1 V are reported. These circuit configurations use noncomplementary BiCMOS technology. Simulations have shown that they outperform other BiCMOS circuits at low supply voltage using 0.35 μm BiCMOS process. The delay and power dissipation of several NAND configurations have been compared. The new circuits offer delay reduction between 40 and 66% over CMOS in the range 1.2-3.3 V supply voltage. The minimum fanout at which the new circuits outperform CMOS gate is 5, which is lower than that of other gates particularly for sub-2.5 V operation  相似文献   

16.
A quasi-complementary BiCMOS gate for low-voltage supply is applied to a 3.3V RISC data path. For a parallel RISC processor, the major issues are the construction of arithmetic modules in a small number of transistors and the shortening of the cycle time as well as the delay time. The feedbacked massive-input logic (FML) concept is proposed to meet these requirements. It reduces the number of transistors and the power within the framework of fully static logic 3-4 times. A low-voltage BiCMOS D-flip-flop is also conceived to allow the single-phase clocking scheme, which is favorable for high-frequency operation of RISCs. To demonstrate these circuit techniques, a 32-b ALU is designed and fabricated using 0.3-μm BiCMOS to demonstrate 1.6 times performance leverage over CMOS at 3.3 V  相似文献   

17.
This paper describes 3.3-V BiCMOS circuit techniques for a 120-MHz RISC microprocessor. The processor is implemented in a 0.5-μm BiCMOS technology with 4-metal-layer structure. The chip includes a 240 MFLOPS fully pipelined 64-b floating point datapath, a 240-MIPS integer datapath, and 24 KB cache, and contains 2.8 million transistors. The processor executes up to four operations at 120 MHz and dissipates 17 W. Novel BiCMOS circuits, such as a 0.6-ns single-ended common base sense amplifier, a 0.46-ns 22-b comparator, and a 0.7-ns path logic adder are applied to the processor. The processor with the proposed BiCMOS circuits has a 11%-47% shorter delay time advantage over a CMOS microprocessor  相似文献   

18.
This paper proposes a BiCMOS wired-OR logic for high-speed multiple input logic gates. The logic utilizes the bipolar wired-OR to circumvent the use of a series connection of MOS transistors. The BiCMOS wired-OR logic was found to be the fastest compared with such conventional gates as CMOS NOR, BiCMOS multiemitter logic and CMOS wired-NOR logic, when the number of inputs was more than four and the supply voltage was 3.3 V. The BiCMOS wired-OR logic was also determined to be the fastest of the four when the fan-out number was below 20 and the number of inputs was eight. In addition, the speed was more than twice as faster when the fan-out number was less than 10. The BiCMOS wired-OR logic was applied to a 64-b 2-stage carry look-ahead adder, and was fabricated with a 0.5-μm BiCMOS process technology. A critical path delay time of 3.1 ns from an input to a sum output was obtained at the supply voltage of 3.3 V. This is 35% faster than that of conventional BiCMOS adders  相似文献   

19.
A 1.5-ns address access time, 256-kb BiCMOS SRAM has been developed. To attain this ultra-high-speed access time, an emitter-coupled logic (ECL) word driver is used to access 6-T CMOS memory cells, eliminating the ECL-MOS level-shifter time delay. The RAM uses a low-power active pull down ECL decoder. The chip contains 11-K, 60-ps ECL circuit gates. It provides variable RAM configurations and general logic functions. RAM power consumption is 18 W; chip power consumption is 35 W. The chip is fabricated by using a 0.5-μm BiCMOS process. The memory cell size is 58 μm2 and the chip size is 11×11 mm  相似文献   

20.
This paper describes the design strategy and implementation of a low-voltage pseudodifferential double-sampled timing-skew-insensitive sample-and-hold (S/H) circuit with low hold pedestal based on the Miller-effect scheme. The S/H circuit employs bootstrapped switches in order to facilitate low voltage operation. The design considerations for each building block are described in detail. The S/H circuit has been designed using a 0.35-/spl mu/m 2P4M CMOS technology and experimental results are presented. The 1.5-V S/H circuit operates up to a sampling frequency of 50 MHz with less than -54.6 dB of total harmonic distortion for an input sinusoidal amplitude of 0.8 V/sub pp/. In these conditions, a differential hold pedestal of less than 0.8 mV, 1.6 ns acquisition time at 0.8-V step input, and 0.8 V/sub pp/ full-scale differential input range are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号