首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
为了研究可见-近红外(Vis-NIR)高光谱成像对滩羊肉中总酚浓度(TPC)快速检测的可行性,基于光谱信息融合图像纹理特征建立TPC含量的预测模型,实现滩羊肉中TPC含量的可视化表达。将样本集根据3∶1的比例划分成校正集和预测集,采用多元散射校正(MSC)、基线校准(Baseline)、去趋势(De-trending)、卷积平滑(S-G)、标准正态变量变换(SNV)、归一化(Normalize)等校正方法去除原始光谱中不良散射等干扰信息。通过竞争性自适应加权抽样(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩法(iVISSA)和变量组成集群分析-迭代保留信息变量(VCPA-IRIV)提取TPC浓度的代表性特征光谱。采用灰度共生矩阵(GLCM)算法依次提取肉样第1主成分图像中纹理特征。基于特征光谱及图谱融合信息建立滩羊肉中TPC含量的偏最小二乘回归(PLSR)与最小二乘支持向量机(LSSVM)预测模型并进行对比分析。结果表明,(1)利用De-trending+SNV预处理后的光谱数据建立的PLSR预测模型性能较好,其R2C=0.874 9,R2P=0.793 2;(2)采用CARS,BOSS,iVISSA和VCPA-IRIV分别提取出了23,35,57和43个特征波长,占全光谱的18.4%,28%,45.6%和16.8%;(3)采用BOSS法提取的关键性波长建立的LSSVM模型性能较好,其R2C=0.851 3,R2P=0.745 9,RMSEC=0.116 8和RMSEP=0.155 0;(4)与基于特征波长建立的预测模型相比,BOSS-ASM-ENT-CON-LSSVM模型为滩羊肉中TPC浓度的最佳图谱融合预测模型(R2C=0.850 0,R2P=0.770 9,RMSEC=0.116 0,RMSEP=0.144 7);(5)利用BOSS-PLSR简化模型将TPC浓度反演到样本的高光谱图像上,通过色彩直观化形式展现出来,实现TPC含量的可视化表达。  相似文献   

2.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   

3.
大气中的颗粒物不仅影响人类生活,还影响植物的光合作用、生长发育和产量品质。实现了颗粒物污染环境的人工模拟,并对采收期的小白菜、生菜、小油菜三种叶菜进行颗粒物作用试验,获取叶片的光合生理信息和高光谱数据,基于高光谱技术和植物表型分析叶菜对颗粒物的响应机理,研究叶菜的光合特性和光谱特征对颗粒物污染的响应情况。结果表明:以颗粒物作为唯一差别条件下,三种叶菜叶片的高光谱曲线整体趋势相同,在可见光波段内试验组反射率增加最大,红边位置发生蓝移,小油菜对颗粒物的作用最敏感,小白菜吸附颗粒物的能力最强。分别比较三种叶菜的净光合速率与叶片原始光谱、一阶导数光谱的相关性,利用相关分析法提取三种叶菜的敏感波段,用原始光谱、FD、MSC和相关分析法提取特征波长;比较10个高光谱特征参数及4个植被指数与净光合速率的相关系数,选出敏感光谱特征参数和植被指数,即生菜的Dr,SDr,SDr/SDb和SDr/Sdy,小白菜的SDr,Dy,NIRRP,(SDr-SDy)/(SDr+SDy)以及小油菜的λr,SDy,(SDr-SDy)/(SDr+SDy)。用ln对数运算、多项式函数以及几种组合方法建立三种叶菜叶片的净光合速率定量反演模型,其中,预处理方法采用SG,FD,SD和MSC,建模方法采用CLS,PLS,PCR和SMLR。以相关系数为模型评价指标,最终确定FD+SG+PLS方法是建立生菜和小白菜净光合速率反演模型的最优方法,FD+SG+MSC+SMLR方法是建立小油菜净光合速率反演模型的最优方法。所建模型可为今后颗粒物污染环境下的模型修正提供参考,具有实用性。研究结果为利用高光谱技术研究叶菜类蔬菜在颗粒物污染环境下的诊断与分析提供理论依据,为设施农业蔬菜的病害预警、生理信息监测、设施环境的净化和管控提供新思路。  相似文献   

4.
SiPLS-CARS与GA-ELM对哈密瓜冠层叶片含水率的反演估测   总被引:1,自引:0,他引:1  
传统的叶片含水率检测方法效率低、操作繁琐且是有损的检测,不利于大田哈密瓜叶片含水率的快速获取。为实现对大田哈密瓜生长期进行更精细的田间灌水管理,利用光谱技术分别获取了哈密瓜植株在成长期(M1)、开花期(M2)、结果期(M3)、成熟期(M4)四个时期内的冠层叶片样本,采用烘干法测得叶片样本的含水率。为提高预测模型的精度和稳定性,首先开展并讨论极限学习机(ELM)模型中的核函数与隐含层神经元个数的选择对ELM模型精度的影响。随后分别利用联合子区间偏最小二乘法(SiPLS)及其与竞争性自适应重加权采样法(CARS)、遗传算法(GA)、连续投影算法(SPA)的组合算法对全波段光谱数据中与叶片含水率相关性高的特征波长进行筛选提取。再分别使用GA与粒子群算法(PSO )对已经确定最佳核函数与隐含层神经元个数的ELM模型中的输入层与隐含层间的连接权值(W)和隐含层神经元阈值(B)进行优化选择,获取最优且稳定的W与B值,进一步提高模型的稳定性和预测精度。最后将四种特征波长提取算法优选出的特征波长分别进行ELM,GA-ELM,PSO-ELM建模分析,以校正集和预测集的相关系数RcRp为模型评价指标,经过对比分析优选出能准确预测哈密瓜冠层叶片含水率的反演估测模型。采用SiPLS及其与CARS,GA和SPA的组合算法提取特征波长,筛选出的变量数分别为273,20,32和6,占全光谱变量的15.6%,1.2%,1.9%和0.03%。进一步将筛选出的特征波长作为自变量,叶片的含水率作为因变量,建立了ELM的预测模型,最佳预测精度Rp值为0.845 0,预测精度不是很理想。故引入GA与PSO对ELM中随机产生的W与B值进行优化选择。最终,经过研究发现,利用GA优化后的ELM模型结合SiPLS-CARS筛选出的特征波长建立的哈密瓜冠层叶片含水率预测精度最优,故反演叶片含水率的最优建模方式为SiPLS-CARS-GA-ELM,Rc值为0.928 9,Rp值为0.903 2,所建模型精度较高,可为大田哈密瓜冠层叶片的含水率进行快速检测,为田间灌溉管理提供科学依据。  相似文献   

5.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标。传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义。基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一算法提取特征光谱变量,而这些算法单独使用易导致预测结果的稳定性不足。对此,开展了基于高光谱成像技术的猕猴桃糖度的无损检测方法研究。以四川省雅安市“红阳”猕猴桃为研究对象,依次对猕猴桃样本编号并采集其在400~1 000 nm波长范围内的高光谱图像,计算感兴趣区域的平均光谱作为样本的有效光谱信息;分别采用多元散射校正(MSC)、标准正态变量变换(SNV)、直接正交信号校正(DOSC)等3种光谱数据预处理方法分析对预测模型精度的影响,对比结果显示DOSC的预处理效果最好;对预处理后的光谱分别采用一次降维(CARS,SPA,IRIV)、一次组合降维(CARS+SPA,CARS+IRIV)算法和二次组合降维算法((CARS+SPA)-SPA,(CARS+IRIV)-SPA))等7种算法提取特征光谱变量,并分别构建了预测猕猴桃糖度的3种模型,即支持向量回归机(SVR)、最小二乘支持向量机(LSSVM)和极限学习机(ELM)模型;最后对比了基于不同特征提取方法的3种模型的预测精度。研究结果表明:ELM模型具有最好的预测性能,而SVR模型的预测性能最差;(CARS+IRIV)-SPA所选特征光谱变量输入LSSVM、ELM模型,其获得的预测结果均优于其他算法所选特征光谱变量输入对应模型所得的预测结果,证明了(CARS+IRIV)-SPA算法在提高猕猴桃糖度含量检测精度方面的有效性。对比不同方法的预测结果可知,(CARS+IRIV)-SPA-ELM对猕猴桃糖度的预测性能最优,其相关系数Rc=0.945 1,Rp=0.839 0,均方根误差RMSEC=0.450 3,RMSEP=0.598 3,预测相对分析误差RPD=2.535 1,该方法为猕猴桃糖度的检测无损化、精准化、智能化发展提供了可靠的理论依据和技术支撑。  相似文献   

6.
叶绿素含量(SPAD)是作物长势评价的重要指标,可以监测农作物的生长状况,对农业管理至关重要,因此快速、准确地估算SPAD具有重要意义。以冬小麦为研究对象,利用无人机高光谱获取了拔节期、挑旗期和开花期的影像数据,获取植被指数和红边参数,研究植被指数与红边参数估算SPAD的能力。先将植被指数与红边参数分别与不同生育期的SPAD进行相关性分析,再基于植被指数、植被指数结合红边参数,通过偏最小二乘回归(PLSR)方法估算SPAD,最后制作SPAD分布图验证模型的有效性。结果表明,(1)大部分植被指数与红边参数在3个主要生育期与SPAD相关性均达到极显著水平(0.01显著);(2)单个植被指数构建的SPAD估算模型中,LCI表现最好(R2=0.56,RMSE=2.96,NRMSE=8.14%),红边参数中Dr/Drmin表现最好(R2=0.49,RMSE=3.18,NRMSE=8.76%);(3)基于植被指数结合红边参数构建的SPAD估算模型效果最佳,优于仅基于植被指数构建的SPAD估算模型,同时,随着生育期推移,两种模型均在开花期达到最高精度,R2分别为0.73和0.78,RMSE分别为2.49和2.22,NRMSE分别为5.57%和4.95%。因此,基于植被指数结合红边参数,并使用PLSR方法可以更好地估算SPAD,可以为基于无人机遥感的SPAD监测提供一种新的方法,也可为农业管理提供参考。  相似文献   

7.
基于最优光谱指数的大豆叶片叶绿素含量反演模型研究   总被引:1,自引:0,他引:1  
叶绿素含量的准确获取及预测可为作物种植的精准化管理提供理论依据。利用最优光谱指数建立大豆叶绿素含量反演模型,以大豆花芽分化期叶片为研究对象,获取高光谱和叶绿素含量数据。首先构建了7种与叶绿素含量相关的典型光谱指数,分别为比值指数(RI)、差值指数(DI)、归一化差值植被指数(NDVI)、修正简单比值指数(mSR)、修正归一化差值指数(mNDI)、土壤调节植被指数(SAVI)和三角形植被指数(TVI),并对原始高光谱进行一阶微分(FD)处理,随后分别对原始和一阶微分高光谱在全光谱波长范围内两两组合所有波长,进行14个光谱指数的计算。再采用相关矩阵法进行最优光谱指数的提取,将所有波长组合计算出的光谱指数与叶绿素含量进行相关性分析,以相关系数最大值为指标,提取出14组最优的波长组合,并进行对应光谱指数值的计算作为最优光谱指数。最后将最优光谱指数划分为3组模型输入变量,分别与偏最小二乘回归(PLS)、最小二乘支持向量机回归(LSSVM)和套索算法LASSO回归3种方法组合建模并对比分析,以决定系数R2c,R2p和均方根误差RMSEC,RMSEP作为模型评价指标,最终优选出精度最高的大豆叶片绿素含量反演模型。结果表明:14组最优光谱指数波长组合分别为RI(728,727),DI(735,732),NDVI(728,727),mSR(728,727),mNDI(728,727),SAVI(728,727),TVI(1 007,708),FDRI(727,708),FDDI(727,788),FDNDVI(726,705),FDmSR(726,705),FDmNDI(726,705),FDSAVI(727,788)和FDTVI(760,698),相关系数最大值rmax均大于0.8。建立最优模型的方法为输入变量为一阶微分光谱指数(组合2)与LSSVM组合的建模方法,所建模型的R2c=0.751 8,R2p=0.836 0,RMSEC=1.361 2,RMSEP=1.220 4,表明模型精度较高,可为大面积监测大豆的生长状态提供参考。  相似文献   

8.
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023 nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554, 694, 696, 738和880 nm)和4个(527, 555, 571和633 nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。  相似文献   

9.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

10.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   

11.
采用荧光高光谱成像技术对脐橙表面不同浓度毒死蜱和多菌灵进行判别。实验通过由氙灯光源激发的高光谱成像系统(392~998.2 nm)分别采集浓度为0, 0.5, 1, 2mg·kg-1的毒死蜱和0, 1, 3, 5mg·kg-1多菌灵的高光谱图像。使用ENVI软件获取样本的感兴趣区域(ROI);对原始光谱数据采用卷积平滑(SG)、标准正态标量变换(SNV)及一阶导数(FD)方法进行预处理;采用区间变量迭代空间收缩法(iVISSA)、无信息变量消除算法(UVE)和竞争性自适应加权算法(CARS)进行一次提取特征波长,二维相关光谱(2D-COS)方法进行二次提取特征波长。最后采用主成分分析与线性判别分析相结合算法(PCA-LDA)和偏最小二乘算法(PLS-DA)建立基于两次提取特征波长脐橙表面不同浓度毒死蜱和多菌灵残留的判别模型。将原始光谱数据与经过预处理的3种光谱数据进行建模分析,结果发现毒死蜱和多菌灵的光谱数据经过SG处理后模型效果最优。对经SG预处理后的毒死蜱光谱数据和多菌灵光谱数据进行特征波长一次提取,最佳特征波长分别为iVISSA法和CA...  相似文献   

12.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.9...  相似文献   

13.
为了便于经济合理的生菜施肥,研究一种生菜叶片氮素水平智能鉴别方法。在温室大棚内无土栽培不同氮素水平的生菜样本,在特定生育期,采集各类氮素水平生菜样本,利用FieldSpec○R 3型光谱仪采集生菜叶片高光谱数据。由于原始高光谱数据存在噪声且冗余性强,利用标准归一化(SNV)对原始高光谱数据进行降噪处理,再利用主成分分析方法(PCA)对高光谱数据进行特征提取。分别利用K最近邻(KNN)和支持向量机(SVM)对降维后的光谱数据进行分类研究,由于自适应提升法(Adaboost)能提升弱分类器分类性能,将其分别引入到KNN和SVM两种分类器中,提出了Adaboost-KNN和Adaboost-SVM两种集成分类算法。分别利用上述四种分类算法对相同测试样本数据进行分类鉴别。结果表明,KNN,SVM,Adaboost-KNN和Adaboost-SVM四种算法的分类正确率分别为74.68%,87.34%,100%和100%,其中所提出的Adaboost-KNN与Adaboost-SVM分类效果都很好,且Adaboost-SVM分类算法的稳定性最好。因此,Adaboost-SVM算法适合作为基于高光谱的生菜氮素水平鉴别的建模方法,并且也为其他作物营养元素无损检测提供了一种新的方法。  相似文献   

14.
蛋白粉是健身者必备的营养补剂,市场需求在不断增加,一些不法商家为了谋取利益,在蛋白粉中加入廉价的粉末售卖。传统的蛋白粉掺杂的检测方法费时、费力,操作复杂,且成本昂贵。高光谱技术具有易于操作、在不损害实验样本的情况下可快速检测等优点,因此,提出使用高光谱技术以实现蛋白粉掺假检测。在蛋白粉中分别加入质量百分数5%~60%,浓度间隔5%的三类掺假物(玉米粉、大米粉和小麦粉),并采集所有样本的光谱信息。在对蛋白粉中的玉米粉、大米粉和小麦粉三类掺假物进行定性判别时,首先分别采用卷积平滑(SG)、标准化(Normalize)、多元散射校正法(MSC)、基线校正(Baseline)和标准正态变换(SNV)的预处理方法对光谱数据进行处理,然后建立基于主成分回归(PCR)、反向传播神经网络(BPNN)和随机森林(RF)的模型,其中基于全波段光谱MSC预处理方法下建立的RF模型最优,其整体准确率达到了100%,其对应的RP和RMSEP分别为0.997 9和0.018 9。在对蛋白粉中不同掺假物浓度进行定量分析时,对三类掺假样本的光谱分别进行SG,Normalize,MSC,Baseline和SNV的预处理,并建立LSSVM模型;比较不同预处理方法下的各模型之间的性能,在蛋白粉中掺玉米粉、大米粉和小麦粉的LSSVM预测模型最佳预处理方法分别是无、Baseline和Normalize,然后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对其筛选,并建立LSSVM模型,三类掺假样本的SPA-LSSVM模型对应的RP为0.989 0,0.986 0和0.997 9,CARS-LSSVM模型对应的RP为0.991 0,0.994 6和0.999 1,故三类掺假样本的CARS-LSSVM模型预测效果更佳。研究表明:高光谱技术可以实现对蛋白粉掺假的定性、定量的检测,并且操作简单、检测快速和无损。  相似文献   

15.
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area normalize)、基线校正(Baseline)、一阶导数(FD)、标准正态变量变换(SNV)及多元散射校正(MSC)等6种方法进行预处理;采用竞争性自适应重加权算法(CARS)提取特征波长。然后利用颜色矩对不同牛肉样本的颜色特征进行提取;对原始光谱图像进行主成分分析,结合灰度共生矩阵(GLCM)算法,提取主要纹理特征。最后结合偏最小二乘判别(PLS-DA)算法建立牛肉样本基于特征波长、颜色特征以及纹理特征的识别模型。KS法将牛肉样本划分为校正集190个,预测集62个;将未经预处理的光谱数据与经过6种不用预处理的光谱数据进行建模分析,结果发现经FD法处理后的光谱数据所建模型的识别率最高;结合CARS法对经FD法预处理后的光谱数据进行特征波长提取,共提取出22个波长;利用颜色矩和GLCM算法分别提取出每个牛肉样本的9个颜色特征、48个纹理特征。将特征波长数据与颜色、纹理特征信息进行融合建模,结果表明,基于特征光谱+纹理特征的模型识别效果最佳,其校正集与预测集识别率分别为98.42%和93.55%,均高于特征光谱数据模型识别率,说明融合纹理特征后使样本分类信息的表达更加全面;融合颜色特征后模型的校正集识别率均有所增加,但预测集识别率稍逊,颜色特征虽携带了部分有效信息,但这些信息与牛肉样本的相关性不大。因此,寻找与牛肉样本相关性更大的颜色特征是提高模型识别率的重要途径之一。该研究结果为牛肉品种的快速无损识别提供了一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号