首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等能量同步荧光光谱测定多环芳烃   总被引:4,自引:0,他引:4  
  相似文献   

2.
利用时间分辨荧光光谱技术,研究了菲、荧蒽、芴、蒽、芘等五种多环芳烃的荧光时间分辨发射光谱特性。以289 nm受激拉曼光作为激发光源,研究了289 nm激发光作用下五种多环芳烃的延时特性和门宽特性。并以多环芳烃随延时时间的荧光峰强度衰减关系曲线,得到菲、荧蒽、芴、芘的荧光寿命分别为37.0, 32.7, 10.9, 147.0 ns。不同荧光物质具有特定的荧光光谱特性,多环芳烃时间分辨荧光光谱特性的研究可以为复杂水体中不同种类多环芳烃的诊断提供依据。  相似文献   

3.
采用量子化学半经验方法AM1对3种多环芳烃电致发光材料(EL)的性质进行了理论研究。对各化合物优化后的构型作振动分析,均未出现虚频率,在此基础上,采用CIS方法计算电子光谱,并给出了3种化合物电子光谱的波长与CIS组态数之间的关系。所得计算结果与实验值基本吻合。  相似文献   

4.
多环芳烃的Shpol''''skii低温荧光光谱分析   总被引:1,自引:0,他引:1  
本文利用一套光纤传导低温装置和荧光分光光度计偶联,探讨了影响Shpol′skii低温荧光光谱的因素,考察了各种实验参数对多环芳烃(PAHs)Shpol′skii光谱的影响,获得了多种PAHs的准线性光谱,并配合同步荧光技术举例说明了Shpol′skii低温荧光技术的高效鉴别能力.结果表明,Shpol′skii低温荧光技术有望成为分析PAHs的常规分析工具.  相似文献   

5.
多环芳烃(polycyclic aromatic hydrocarbon,PAHs)具有强致癌性,极大威胁着人类身体健康。因此,寻找一种高效、精确的多环芳烃浓度检测方法十分必要。采用FS920荧光光谱仪分析了苯并(k)荧蒽(BkF)、苯并(b)荧蒽(BbF)、苯并(a)芘(BaP)混合溶液的荧光光谱特性。发现在激发波长260~400 nm、发射波长300~500 nm范围内,混合溶液的荧光光谱重叠严重。当混合物浓度配比不同时,荧光特性也存在很大差异。针对光谱图不能直接反映混合物各组分浓度的特点,将人工蜂群(ABC)算法优化的径向基函数(RBF)神经网络应用于浓度检测中,对比分析普通RBF和ABC-RBF神经网络模型。结果表明,ABC-RBF神经网络模型预测误差相对较小,训练到95次时,均方差精度达到10~(-3)。BkF、BbF和BaP的回收率平均值分别为99.20%、99.12%和99.23%,证明此网络适用于检测多环芳烃溶液,为检测多环芳烃浓度提供了一种快速、有效的新方法。  相似文献   

6.
多环芳烃的Shpol′skii低温荧光光谱分析   总被引:2,自引:0,他引:2  
本文利用一套光纤传导低温装置和荧光分光光度计偶联,探讨了影响Shpol′skii低温荧光光谱的因素,考察了各种实验参数对多环芳烃(PAHs)Shpol′skii光谱的影响,获得了多种PAHs的准线性光谱,并配合同步荧光技术举例说明了Shpol′skii低温荧光技术的高效鉴别能力,结果表明,Shpol′skii低温荧光技术有望成为分析PAHs的常规分析工具。  相似文献   

7.
恒能量同步荧光光谱法测定食用油中多环芳烃   总被引:2,自引:0,他引:2  
用12%(w/V)的氢氧化钾-乙醇溶液皂化食用油的脂肪酸,以环己烷萃取皂化液中的多环芳烃,经浓缩,柱层析纯化并浓缩,取微量试样液稀释后,通过选择合适能量差,建立了同步荧光法测定食用油中多环芳烃含量的新方法,其线性范围为5—1000ng.mL-1,检出限在0.04—15.21ng.mL-1之间,平均加标回收率在81.94%—90.06%之间。该方法具有快速、简便、准确等特点。  相似文献   

8.
土壤质地对多环芳烃(PAHs)的荧光检测造成不可忽视的干扰,论文在探究不同二氧化硅含量,相同菲浓度土壤样品荧光强度与漫反射率变化关系的基础上,建立了一种基于近红外漫反射光谱减小土壤质地对PAHs荧光强度影响的校正方法。校正前后荧光强度与PAHs浓度之间线性拟合的复相关系数R2分别为5.42×10-6和0.94。研究结果表明:所建立的校正方法可有效减小土壤中二氧化硅对荧光定量分析PAHs工作曲线的影响。  相似文献   

9.
提出了快速直接对土壤中多环芳烃污染物进行荧光检测的方法——激光诱导荧光光谱技术,以多环芳烃蒽为研究对象,实验验证了激光诱导荧光光谱技术快速检测土壤中蒽污染物的可行性.采用AvaSpec-2048TEC型热电制冷式光纤光谱仪对土壤中的蒽进行直接测量,研究结果表明:当土壤中蒽浓度在一定范围内(0.000 005~0.001...  相似文献   

10.
为准确进行浓度检测,用Savitzky-Golay(SG)多项式曲面平滑法去除三维荧光光谱数据的冗余信息,分别采用平行因子法(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法对光谱数据进行分解。设计多环芳烃类污染物的检测实验,分析了芴(FLU)、苊(ANA)及两者混合溶液的荧光光谱特性。FLU溶液在λ_(ex)/λ_(em)=302/322 nm处存在一个明显的荧光峰,并且存在连续侧峰。ANA溶液存在两个荧光峰,分别为λ_(ex)/λ_(em)=290/322 nm和λ_(ex)/λ_(em)=290/336 nm。在激发波长200~370 nm扫描范围和发射波长240~390 nm扫描范围内,FLU和ANA荧光光谱重叠严重。结果表明,两种算法均能分辨出FLU和ANA,并取得了很高的回收率,但APTLD算法的检测效果更好。  相似文献   

11.
利用荧光分光光度计对处于常温、压力范围为0.1~60 MPa、浓度为10~(-6)mol·L~(-1)的蒽的三维荧光光谱及浓度比为1∶1的蒽-芴、蒽-萘、蒽-菲、蒽-苊、蒽-荧蒽的三维荧光光谱进行了测定,并通过分析不同压力下蒽的荧光峰位置和峰强度的变化来探讨压力对荧光光谱的影响。结果显示,随着压力升高,蒽的荧光峰并未发生漂移,但是荧光强度发生了显著变化。峰位置为250/382 nm的荧光峰在60 MPa时荧光强度达到最大值,相较于常压下,荧光强度增加了13.6%。其他多环芳烃的加入会改变蒽的高压荧光特性,当蒽中加入了萘,峰位置为250/382 nm的荧光峰强度在10 MPa时达到最大值,相较于常压下,荧光强度增加了9.35%。  相似文献   

12.
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。多环芳烃类物质具有致癌性,难降解性,多由尾气排放,垃圾焚烧产生,危害着人类健康及环境,因此人们不断探索对多环芳烃检测的方法。实验选取多环芳烃中的苊和萘作为检测物质,利用FLS920荧光光谱仪,为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长40 nm,设置扫描的激发波长(λex)范围为:200~370 nm,发射波长(λem)范围为:240~390 nm,对多环芳烃进行荧光扫描获取荧光数据,采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。实验选用的苊和萘均购于阿拉丁试剂官网,配制浓度为10 mg·L-1的一级储备液,再将一级储备液稀释,得到苊和萘浓度为0.5,1,1.5,2,2.5,3,3.5,4和4.5 mg·L-1的二级储备液,并将苊和萘进行混合。在进行光谱分析前需要对苊和萘的光谱进行预处理,采用空白扣除法扣除拉曼散射的影响,并采用集合经验模态分解(EEMD)消除干扰噪声。实验测得苊存在两个波峰,位于λex=298 nm,λem=324/338 nm处,萘存在一个波峰,位于λex=280 nm,λem=322 nm处。选用的PARAFAC算法对组分数的的选择很敏感,因此采用核一致诊断法预估组分数,估计值2和3的核一致值都在60%以上,分别对混合样品进行了2因子和3因子的PARAFAC分解,将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理,并绘制光谱图,与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。同时将PARAFAC得到的混合样本的预测浓度,通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。选择2因子时,各混合样品中苊和萘拟合度为95.7%和96.7%,平均回收率分别为101.8%和98.9%,均方根误差分别为0.0187和0.0316;选择3因子时,各混合样品中苊和萘拟合度为95.3%和95.8%,平均回收率分别为97%和102.5%,均方根误差分别为0.033和0.116,由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。分析实验结果表明,基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析,能够有效的判定混合样品的类别,同时能够成功的预测出混合样品的浓度。  相似文献   

13.
多环芳烃(PAHs)是煤,石油,木材,烟草等燃料和有机高分子化合物等有机物不完全燃烧时产生的一种持久性有机污染物。迄今已发现有200多种PAHs,其中有多种PAHs具有致癌性。PAHs广泛分布于我们生活的环境中,水中的PAHs主要来源于生活污水,工业排水和大气沉降。使用三维荧光光谱法,结合BP神经网络与交替三线性分解(ATLD)算法对水中的PAHs进行定性和定量分析。以苊(ANA)和芴(FLU)2种PAHs为目标分析物,用甲醇(光谱级)制备样本。使用FS920稳态荧光光谱仪对样本进行检测,设置激发波长为200~370 nm,间隔10 nm记录一个数据;发射波长为240~390 nm,间隔2 nm记录一个数据。设置初始发射波长总是滞后激发波长40 nm,以消除一级瑞利散射的干扰。随后使用BP神经网络法对待测样本数据进行预处理。利用BP神经网络基于误差反向传播算法(error back propagation training,BP)原理,对测得的三维荧光数据进行数据压缩处理,该方法具有柔性的网络结构与很强的非线性映射能力,网络的输入层、隐含层和输出层的神经元个数可根据实际情况设定,并且网络的结构不同时,性能也有所差异。随后,用ATLD算法分解预处理后的三维荧光光谱数据。采用核一致诊断法确定待测样本的组分数为2。结果表明,ATLD算法分解得到两种PAHs(ANA和FLU)的激发、发射光谱图与目标光谱非常相似,能实现光谱重叠严重的PAHs(ANA和FLU)的快速定性和定量分析,实现了以“数学分离”代替“化学分离”。将预测样本导入训练好的BP神经网络中,得到处理后待测样本数据的网络均方差(MSE)均小于0.003,网络的峰值信噪比(PSNR)均大于120dB(数据压缩中典型的峰值信噪比值在30~40 dB之间,越高越好),可见BP神经网络对样本数据的压缩效果较好。BP神经网络训练后,得到输出值与目标值之间的拟合度高,拟合系数达0.998,具有较好的数据压缩效果。使用ATLD算法对待测样本进行分解后得到平均回收率为97.1%和98.9%,预测均方根误差为0.081 8和0.098 5 μg·L-1。三维荧光光谱结合BP神经网络和ATLD能够实现痕量PAHs的快速检测。  相似文献   

14.
菲的三维荧光光谱特性研究   总被引:3,自引:0,他引:3  
多环芳烃(简称PAHs)具有高荧光量子产率,利用三维荧光光谱研究了PAHs中菲的荧光光谱特性.菲具有两个荧光峰.通过对菲的三维荧光光谱的分析,选择在激发波长255 nm、发射波长370 nm对菲进行定量分析.菲溶液在5.0~250.0 ng·mL-1的范围内工作曲线呈线性关系,检出限为3.88 ng·mL-1,相对标准偏差为4.23%(n=5),实验还尝试了对自来水样品的测定,测试效果良好,回收率为90.0%~105.4%.该研究为快速检测水源水中痕量PAHs提供了方法基础.  相似文献   

15.
采用FS920荧光光谱仪分析了苯并[k]荧蒽(BkF)、苯并[b]荧蒽(BbF)和两者混合物的荧光特性.结果表明BkF的两个荧光峰分别位于306 nm/405 nm和306 nm/430 nm,BbF的两个荧光峰分别位于306 nm/410nm和306 nm/435 nm.BkF和BbF不同浓度配比及其相互间的荧光干扰,使得混合物荧光特性差异较大,荧光强度和浓度间关系变得复杂.为准确测定混合物中BkF和BbF的浓度,采用递阶算法优化的径向基神经网络对其进行检测,结果表明BkF和BbF的平均回收率分别为98.45%和97.71%.该方法能够实现多环芳烃类污染物共存成分的识别和浓度预测.  相似文献   

16.
多环芳烃为优先控制污染物,但是由于其含量很低,多组分多环芳烃荧光峰相互重叠,所以常规荧光光谱法无法对其荧光峰进行有效解析。采用二维荧光相关分析方法对三种多环芳烃,蒽、菲和芘的混合溶液进行荧光峰解析。根据研究目标,按照三种多环芳烃浓度比的不同配制了三种混合物体系,共27个样本,每种体系的三种溶液浓度彼此间按规律递增和递减。在此基础上,以浓度为外扰,构建了各体系的同步和异步二维荧光相关谱。同步谱中,在425,402,381,373,365,393及347 nm处产生自相关峰。以未被覆盖的菲在347 nm处荧光峰为线索,通过其与各波长处荧光交叉峰的正负,判断出了402,381,425和452 nm处荧光峰源于混合溶液中的蒽; 373与393 nm处荧光峰源于混合溶液中的芘; 365,356及347 nm处荧光峰源于混合溶液中的菲。通过异步谱解析出菲的385 nm处荧光峰,证明了异步谱比同步谱具有更好的光谱分辨率。研究结果表明,采用二维荧光相关方法对光谱严重重叠的多组分多环芳烃的解析是可行的,并具有一定的优势,可推广到对环境中其他污染物质的检测。  相似文献   

17.
多环芳烃(PAHs)类物质具有致畸、致癌、致突变的性质,严重污染生态环境,进而对人类的健康及动植物生长造成威胁。PAHs通过排污、大气沉降、地表径流等各种循环途径进入水环境中,由于种类众多且化学性质相似,常规的检测方法如化学滴定法、电化学法等很难实现快速准确的测定。为实现复杂体系中PAHs的定性与定量,工作中基于三维荧光光谱分析法,结合集合经验模态分解(EEMD)去噪与自加权交替三线性分解(SWATLD)二阶校正,对超纯水以及池塘水环境中的苊(ANA)和萘(NAP)进行分析测定。首先选择合理的浓度配制样本,用FS920荧光光谱仪测得样品的三维荧光光谱,利用空白扣除法将光谱数据中的散射消除,得到真实的光谱数据。然后对去除散射的数据进行EEMD降噪处理,该方法具有自适应性强、参数设置简便的优点,能够去除嘈杂信息,提高数据信噪比,并将去噪参数与快速傅里叶变换、小波滤波和经验模态分解进行比较。最后用SWATLD算法以“数学分离”代替“化学分离”,对超纯水和池塘水环境中光谱重叠的ANA和NAP进行定性识别和定量预测,该算法对组分数的选择不敏感,能够在未知干扰物共存情况下实现多组分目标分析物的同时检测,即具有“二阶优势”,并将预测结果与平行因子分析进行比较。结果表明空白扣除法能够成功将拉曼散射消除。EEMD降噪方法使ANA和NAP的光谱更加规整平滑,有效信息更加突出,该方法去噪后数据信噪比为16.845 2,均方根误差为11.136 6,波形相似系数为0.990 9,三项指标均优于快速傅里叶变换和经验模态分解等其他去噪方法,能达到小波滤波的去噪效果并且不用设置先验参数。利用SWATLD二阶校正方法得到验证样本中ANA与NAP的分解光谱与实际光谱基本吻合,平均预测回收率分别为96.4%和104.2%,预测均方根误差分别为0.105和0.092 μg·L-1;在存在未知干扰物的池塘水样本中,分解出的光谱依然能与实际光谱吻合,ANA与NAP两者的平均预测回收率分别为94.8%和105.5%,预测均方根误差分别为0.067和0.169 μg·L-1;与平行因子分析相比,两项指标均具有优势。  相似文献   

18.
表面单层组装多环芳烃荧光行为的Monte Carlo模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
用MonteCarlo方法模拟了惰性基片表面单层组装多环芳烃 (传感元素 )的荧光行为 ,考察了基片表面传感元素固定化百分率、传感元素激发百分率 (光吸收效率 )以及传感元素分子在介质中相互缔合形成激基缔合物趋势大小 (用P表示 ,P值介于 0到 1)等因素对传感元素激基缔合物荧光发射强度与单体荧光发射强度之比所产生的影响 .结果表明 ,具有中等光吸收效率的多环芳烃适宜于作为传感元素 ,中等固定化密度的基片可能具有比较理想的传感性能  相似文献   

19.
多环芳烃(PAHs)是一类在自然环境中常见且广泛存在的有毒有害有机物。其主要来源有自然界的各种微生物以及植物的生物合成,富含植被区域的天然火灾,火山的喷发物,化石燃料以及人为工业碳氢化合物的不完全燃烧和运输过程中的石油泄漏等。多环芳烃的毒性较为强烈,具有生物致癌性,遗产毒性和致突变性。它对于人体呼吸系统,循环系统,神经系统有着多方面的危害,是一种重要的有机污染物,因此有必要对多环芳烃的现场监测和分析方法进行研究。目前对于多环芳烃的分析方法主要有化学分析法和光谱分析法。化学分析法包含有前处理的化学滴定法,液相色谱法(LC),高效液相色谱法(HPLC),气相色谱质谱法(GC-MS);光谱学分析法涉及紫外吸收光谱,荧光光谱和三维荧光光谱等。三维荧光光谱同时获得激发波长和发射波长的信息,因而包含的光学信息十分丰富,灵敏度高,光谱特征显著,在实际水体的现场检测和水体样本混合组分的快速研究有明显的优势。常见的三维荧光光谱解析方法有平行因子分析法(PARAFAC),多维偏最小二乘法(N-PLS)等。平行因子分析是分析多环芳烃重叠三维荧光光谱的一种有效方法。但有时由于多种组分的荧光较弱,它对三维荧光光谱的欠定分析并不能得到令人满意的结果。为了从两个样品中提取更多的成分,提出一种基于奇异值分解(SVD)和PARAFAC的方法。首先对每个观测样本进行奇异值分解,根据累积贡献率选取合适的奇异值,构造新的伪样本来突出微弱的荧光信号。然后,将两个观测样品及其对应的伪样品输入PARAFAC,恢复组分光谱。为验证所提方法的有效性,对三组不同荧光强度的多环芳烃重叠三维荧光光谱进行了分析。结果表明,从两个混合样品中提取并识别出6个多环芳烃的纯组分光谱,其分辨发射和激发光谱与标准光谱的相似性均在0.80以上。  相似文献   

20.
柴油机加氢降低多环芳烃的数值研究   总被引:2,自引:0,他引:2  
为实现柴油机节能减排目标,结合燃料热解方法向柴油机中加入微量氢气是一种新思路.本文以数值研究方法,基于简化的包含多环芳烃生成的正庚烷氧化反应机理,通过三维CFD模拟方法研究了不同微量氢气添加量下柴油机燃烧室内的温度、压力曲线,以及典型多环芳烃生成曲线.计算研究结果表明,加入适当的微量氢气明显改善了柴油机燃烧室内的燃烧特性,并且可以使多环芳烃排放水平在一定数量级程度上得到减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号