共查询到19条相似文献,搜索用时 73 毫秒
1.
2.
基于嵌入式多尺度分解和可能性理论的多波段纹理图像融合 总被引:2,自引:0,他引:2
将多尺度变换和“高频取大、低频加权平均”融合规则相结合是融合双波段图像的有效方法。但用该类方法融合多波段图像时,序贯式加权常常会导致原图像间固有的差异信息在融合图像中被弱化,从而影响后续的目标识别和场景理解。该问题在融合具有纹理特征的多波段图像时更为突出。为此,提出了一个基于嵌入式多尺度分解和可能性理论的多波段纹理图像融合新方法。首先,利用一种多尺度变换方法把多波段原图像分别分解为高频和低频成分,并对多波段图像中标准差最大的一幅原图像的低频成分利用另一种多尺度方法进行分块,再以该分块图像的大小和位置为标准对其余波段的原图像进行分块。然后,基于可能性理论的相关融合规则逐一融合对应的多波段块图像,再把块融合图像进行拼接,以拼接结果作为低频融合图像。最后,将该低频融合图像和利用取大规则融合得到的高频成分一起通过多尺度逆变换获得最终的融合图像。这种方法不仅将像素级和特征级融合方法综合在一起, 而且将空间域和变换域技术综合在一起, 并通过对大小块采用不同融合规则解决了目标边缘的锯齿效应问题。实验表明该方法效果显著。 相似文献
3.
4.
5.
一种自适应的多光谱图像与全光图像融合新方法 总被引:2,自引:4,他引:2
对于不同多光谱图像与全光图像的融合,目前一些融合算法在光谱信息和分辨率上不能同时得到较好的融合效果.针对这一问题,提出一种新的自适应图像融合方法.实验结果表明,该方法不仅能够较好地保留融合图像的光谱信息和提高空间分辨率,而且具有较强的自适应性. 相似文献
6.
基于实测端元光谱的多光谱图像光谱模拟研究 总被引:2,自引:0,他引:2
地物光谱特性是遥感应用的基础。然而,在基于野外实测端元光谱的遥感应用中,由于测量尺度不同,导致同一地物光谱形态和反射率值存在很大差异,为遥感信息的定量反演带来困难。文章以新疆塔里木盆地北缘渭干河-库车河绿洲为研究区,选取裸土、植被两类地物作为研究对象,首先通过AVNIR-2传感器的光谱响应函数,实现了将野外实测端元光谱拟合为多光谱离散光谱,通过实例数据表明,拟和的多光谱与AVNIR-2像元光谱具有很好的相关性,在此基础上,采用线性算法建立端元光谱与遥感图像像元光谱的转换模型,实现了从实测端元光谱尺度向遥感多光谱像元尺度的定量光谱转换,为遥感定量分析奠定了一定基础。 相似文献
7.
基于多尺度对比度塔的图像融合方法及性能评价 总被引:41,自引:6,他引:41
给出了一种新的基于对比度塔形分解的分层图像融合方法,其基本思想是先对源图像进行对比度塔形分解,其次,按照融合规则,采用基于区域特性量测的加权算子去构造融合图像对应的对比度金字塔,最后,通过逆塔形变换重构融合图像。该方法被成功地用于图像的融合处理,此外,利用熵,交叉熵,互信息,均方根误差,峰值信噪比等参量,对该融合方法的融合性能进行了评价与分析,实验结果表明,该融合方法是十分有效的。 相似文献
8.
基于多光谱图像的烟雾检测 总被引:2,自引:0,他引:2
烟雾检测对于火灾早期防范非常重要,传统的智能视频和图像处理技术易受背景运动信息影响,抗干扰性差,且不容易区分森林水雾和燃烧产生的烟雾,森林防火误报率高。为此提出一种新的多光谱图像检测方法检测烟雾。采用多光谱成像系统,获取400至720 nm波段范围的烟雾、水雾光谱图像序列,对图像进行分层像素整合处理;利用欧氏距离度量不同分块光谱特征差异,获取动态区域光谱特征向量,根据目标与背景间光谱特征向量差异,提取烟雾、水雾区域。室内外试验结果表明:多光谱图像检测方法可用于烟雾检测,能够有效地检测并区分烟雾和水雾,与视频图像方法结合,可有效地用于森林火灾监测,降低森林火灾检测误报率。 相似文献
9.
为了充分利用源图像重要特征,提出了一种基于迭代导向滤波与多视觉权重信息的红外与可见光图像融合算法.首先,通过一种迭代导向滤波器将输入图像分解为基础层与细节层;其次,利用边角信息、清晰度与对比度来综合确定二进制权重系数,再选择导向滤波对其优化,进一步去除噪声并抑制伪影的产生;最后,应用重构准则对基础层与细节层进行组合,得到融合图像.实验结果表明,与其它多尺度分解相比,该方法具有尺度感知特性,可以更好地分离空间重叠的特征,不仅可以使夜视融合图像的细节信息更突出,还能够有效地抑制伪影. 相似文献
10.
在传统的多曝光图像融合方法中,一旦目标发生移动则会在最终融合图像中出现"鬼影"现象。现有的去"鬼影"算法大部分都继承了参考图像中的大量信息,倘若参考图像中出现曝光不足/曝光过度现象,便会影响到最终的融合结果。基于此,提出了一种基于图像块分解的多曝光图像融合去鬼影算法。首先将参考图像划分为曝光正常及曝光不足/过度两大区域,并有针对性地对这两部分区域进行处理。为了更加精准地检测出鬼影区域,将多曝光图像块分解成信号结构、信号强度和平均强度3个概念相独立的部分,采用图像块结构一致性检测的方式来进行鬼影检测。最后,去除结构不一致的图像块并对这3个部分分开融合,重构所需图像块并将其聚合至最终融合图像。实验结果表明,与现有的去"鬼影"算法相比,所提算法取得了更好的视觉效果,且计算效率得到了较大提升。 相似文献
11.
多光谱/全色影像融合可以得到高空间分辨率的多光谱影像,在影像解译和分类等方面具有十分重要的意义。提出一种基于梯度一致性约束的遥感影像融合方法。该方法在最大后验概率框架下,通过梯度一致性约束建立理想高空间分辨率多光谱影像和全色影像之间的关系,并结合多光谱影像观测模型和Huber-Markov影像先验,构建融合目标函数,最后采用梯度下降法求解得到融合影像。本文方法在目标函数中引入了梯度一致性约束,克服了现有的同类方法受限于波段数量的缺陷,同时在求解中自适应确定每个波段的迭代步长,充分顾及了各波段的光谱特性,从而既确保了融合影像的光谱信息保真度,也提高了融合影像的空间信息融入度。通过IKONOS和WorldView-2影像对该方法进行了验证,并和GS,AIHS和AMBF等融合方法从定性和定量两方面进行了比较分析。实验结果表明,相比于其他方法,该方法可以在更好保持光谱信息的同时增强影像的空间分辨率,具有更广泛的适用范围和更佳的融合效果。 相似文献
12.
基于局部保持投影的掌纹识别 总被引:2,自引:0,他引:2
为了保持掌纹空间的局部结构,运用局部保持投影(LPP)方法进行掌纹识别.在小样本图像识别中,特征方程矩阵存在奇异性.传统的解决方法是运用主元分析(PCA)获得原样本的低维特征子空间,在该空间中运用LPP进行特征提取.由于PCA和LPP的投影标准本质上是不同的,PCA降维时丢失许多重要的判别信息.为了解决这个问题,提出运用三级小波变换、图像下抽样、图像分块求平均值三种方法降低掌纹空间的维数,在低维图像上应用LPP提取局部特征.计算特征矢量间的余弦距离进行掌纹匹配.运用PolyU掌纹图像库进行测试,结果表明,该算法的识别性能均优于PCA和PCA LPP.特征提取和匹配总时间小于0.1 S,具有快速、有效、易于实现等优点. 相似文献
13.
为解决大豆冠层在近地端的多光谱图像边缘灰度不均,目标与背景之间灰度差别小,难以准确高效地获取大豆冠层目标区域的难题,将多光谱成像处理技术与经典图像分割方法有机融合,提出基于多光谱图像处理技术的大豆冠层提取方法。以东北大豆为对象,通过Sequoia多光谱相机采集绿光、近红外、红光、红边和可见光五类大豆多光谱图像,采用高斯平滑滤波法对原始大豆多光谱图像进行预处理,分析多光谱图像中大豆冠层和背景的灰度直方图分布特性,在此基础上利用迭代法、Otsu法和局部阈值法提取原大豆多光谱图像中冠层区域,并以图像形态学开运算处理细化和扩张背景,避免图像区域内干扰噪声对大豆冠层识别效果的影响,同时以有效分割率、过分割率、欠分割率、信息熵以及运行时间等为监督指标,对大豆冠层多光谱图像识别模型进行效果评价。大豆冠层识别模型中迭代法可以有效分割近红外和可见光大豆冠层图像,有效分割率分别为97.81%和87.99%,对绿光、红光和红边大豆冠层图像分割效果较差,有效分割率低于70%;Otsu法和局部阈值法可以有效分割除红光波段的其余四种多光谱大豆冠层图像,且有效分割率均在82%以上;三种算法对红光大豆冠层图像的有效分割率均低于20%,未达到较好效果。在原始多光谱图像中应用迭代法、Otsu法和局部阈值法提取大豆冠层图像与标准图像的信息熵平均值波动幅度分别为:0.120 1,0.054 7和0.059 8,其中Otsu法和局部阈值法较小,表明了对于大豆冠层多光谱图像识别中两种算法的有效性。该算法中Otsu法和局部阈值法均可以有效提取绿光、近红外、红边和可见光等多光谱的大豆冠层图像,二者较为完整地保留了大豆冠层信息,其中Otsu法实时性能较局部阈值法更好。该成果为提取农作物冠层多光谱图像提供理论依据和技术借鉴。 相似文献
14.
针对复杂情况下海上舰船目标单波段特征识别能力不足的问题,研究可见光、中波红外和长波红外三波段特征图像融合技术,重点解决图像融合方法中存在的算法耗时和融合策略选择的问题,提出了一种新的基于区域协方差矩阵的多波段特征级融合方法,针对可见光图像和红外图像分别设计11维和5维特征向量,协方差矩阵可以将多个特征进行融合,既保证了不同目标之间的区别性,同时又减小计算量。该方法首先利用显著性检测,快速定位图像中的目标区域,然后,针对不同波段图像设计的特征向量定义协方差阵的距离计算公式并进行匹配,通过对图像的一次遍历操作获得积分图像,在协方差计算时达到快速计算的目的,最后利用k-阶最近邻算法对多种舰船目标进行分类识别。利用实拍的3 400余张三波段舰船目标图像作为测试数据。实验主要分为两部分,首先对比单波段和三波段融合识别的识别率,验证所提出的融合方法具有更广的应用范围;然后,在计算效率上对比多种传统的像素级方法,验证采用的特征级融合在计算时间上的优势。实验结果表明,该方法可达到95.1%的识别率,单帧计算耗时约为0.5 s,在实时性和检测率方面都有明显提高。 相似文献
15.
海洋沉积物中碳的变化是衔接海洋生态系统的过去与未来的信息桥梁,揭示了海洋生态过程变化规律.因此开展海洋沉积物碳含量的研究,对掌握海洋生态系统碳循环规律,研究全球碳循环,研究对气候变化的响应和反馈有着重要的作用.光谱技术是一种快速、无损的测量方法,在定量分析中已有很成熟的应用.多光谱融合通过将多个光谱数据结合一起,获得比... 相似文献
16.
主成分分析(PCA)法在掌纹识别方面可以取得较好的效果.但是随着掌纹图像库的扩大,PCA转换矩阵训练时间迅速增长;注册新掌纹时,需要重新训练PCA转换矩阵.添加注册掌纹的代价随着掌纹库的增大迅速增加.如何能够在保持PCA识别效果的情况下提高使用的便捷性成为PCA广泛应用的主要障碍.提出了一种以PCA重建误差为分类依据的PCA重建误差学纹识别方法.该方法与PCA法基于相同的原理,在采用最近邻分类器时可以取得与PCA法相等的性能;同时可以有效减少掌纹图像库的识别时间,可以以极少的代价扩展掌纹库. 相似文献
17.
针对传统基于多尺度变换的图像融合方法存在的缺点,提出了一种基于平移不变剪切波变换域的自适应图像融合新方法.首先,使用平移不变剪切波变换对源图像进行分解,得到低频子带及方向带通子带系数.然后,对于低频子带系数采用梯度域奇异值分解方法估计图像的局部结构信息,提出了基于提取的特征与S函数的可变加权融合策略;对于各方向带通子带系数,提出了一种基于改进的拉普拉斯能量和匹配的"加权平均"和选择相结合的系数选择策略.最后,对得到的融合系数进行逆变换得到融合图像.通过实验可以发现相比于传统的图像融合方法,本文方法得到了更高的客观指标,融合图像视觉效果更好. 相似文献
18.
The quality of feature extraction plays a significant role in the performance of speech emotion recognition. In order to extract discriminative, affect-salient features from speech signals and then improve the performance of speech emotion recognition, in this paper, a multi-stream convolution-recurrent neural network based on attention mechanism (MSCRNN-A) is proposed. Firstly, a multi-stream sub-branches full convolution network (MSFCN) based on AlexNet is presented to limit the loss of emotional information. In MSFCN, sub-branches are added behind each pooling layer to retain the features of different resolutions, different features from which are fused by adding. Secondly, the MSFCN and Bi-LSTM network are combined to form a hybrid network to extract speech emotion features for the purpose of supplying the temporal structure information of emotional features. Finally, a feature fusion model based on a multi-head attention mechanism is developed to achieve the best fusion features. The proposed method uses an attention mechanism to calculate the contribution degree of different network features, and thereafter realizes the adaptive fusion of different network features by weighting different network features. Aiming to restrain the gradient divergence of the network, different network features and fusion features are connected through shortcut connection to obtain fusion features for recognition. The experimental results on three conventional SER corpora, CASIA, EMODB, and SAVEE, show that our proposed method significantly improves the network recognition performance, with a recognition rate superior to most of the existing state-of-the-art methods. 相似文献