首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
光谱数据用于多元校正时,组分间的交互作用会使部分波段与组分浓度呈非线性关系,在用偏最小二乘法(PLSR)建模前,宜作波长筛选。基于迭代初始化的遗传算法(IRGA)将运行多轮GA,递归地以上轮结果作为先验知识支持下轮的初始化,并对入选波长点的统计频率进行平滑处理,由此可高效地从全谱中选出校正性能良好的波段,筛选结果稳定。入选波段对全谱既作了适当简化,又充分保留了有效信息。再采用PLSR建模,模型更具稳健性。将该法用于感冒液的五组分测定,与全谱建模法相比,其预测性能和稳健性有显著提高。  相似文献   

2.
种子活力对于农业发展至关重要,而甜玉米种子普遍存在活力较低且不耐贮藏的问题。因此,及时准确地对甜玉米种子活力进行检测尤为重要。电导率测定法作为一种传统的种子活力检测方法,存在对种子有一定破坏性、耗时较长、重复性不佳等缺点。针这些问题,尝试利用可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法建立甜玉米种子电导率快速、无损且精确的检测方法。以高温高湿老化的绿色超人甜玉米种子为试验材料,先通过可见-近红外高光谱成像系统采集种子的高光谱图像和进行电导率测定试验,随后对高光谱图像进行黑白板校正、提取感兴趣区域,获取光谱反射率数据。利用多种预处理方法分别为标准正态变量变换(SNV)、二阶导(SD)、一阶导(FD)、和多元散射校正(MSC)建立甜玉米种子电导率的偏最小二乘回归(PLSR)模型,比较分析并筛选出最适预处理方法。再通过连续投影算法(SPA)及遗传算法(GA)对MSC预处理后的高光谱波段进行筛选提取,基于选出的特征波段建立PLSR模型,并与全波段(Full)PLSR模型进行对比分析,得到与甜玉米种子电导率相关性最高的高光谱波段组合,最终确立一种能够预测甜玉米种子电导率的方法体系。实验结果显示:不同预处理方法(SNV,FD,SD和MSC)建立的PLSR模型性能有所差异,其中MSC-PLSR模型的表现最优秀,其校正决定系数和预测决定系数分别为0.983和0.974,相应的校正均方根误差和预测均方根误差分别为0.165和0.226。进一步分析MSC-Full-PLSR,MSC-SPA-PLSR和MSC-GA-PLSR模型,发现GA能够将全光谱的853个波段压缩至25个有效波段,所建立的MSC-GA-PLSR模型仍表现优秀,其校正决定系数和预测决定系数分别为0.976和0.973,相应的校正均方根误差和预测均方根误差分别为0.194和0.212。实验结果表明:基于可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法实现对甜玉米种子电导率的预测存在一定的可行性。该研究为甜玉米种子电导率的快速、无损且精确的检测提供一定的理论支持。  相似文献   

3.
在近红外光谱分析模型中全谱信息通常含有大量冗余信息,会导致模型解析时间延长、 加大模型解析难度,因此如何快速有效地选取特征波长至关重要。采用基于间隔偏最小二乘(interval partial least squares, IPLS)结合连续投影算法(successive projections algorithm, SPA)对小麦秸秆发酵过程微生物生物量进行特征波长选择,共制备85个样本,采用氨基葡萄糖法测定微生物生物量,选择68个样本作为校正集,17个样本作为验证集。首先对全谱区520个波长点根据间隔点大小10, 20, 30, 40进行分段建模,选取出4 450~4 925和9 194~9 993 cm-1两个波段范围作为特征波段,将选取出的特征波段再进行连续投影算法及遗传算法(genetic algorithm, GA)特征波长点选取,并进行综合分析对比。实验结果表明采用IPLS-SPA算法选择4 450~4 925和9 194~9 993 cm-1的组合波段具有最佳建模效果,相比于全谱建模其参与建模的波长点由520个减少到10个,模型验证集决定系数(R-Square, R2)从0.884 9提升至0.945 28,验证集均方误差根(root mean square error prediction, RMSEP)从11.104 9降至8.203 3,GA遗传算法虽取得了更优的模型精度,但其实验结果并不稳定且随机性较强,而IPLS结合SPA方法能够稳定而准确的(地)选择特征波长信息,提高模型运算速度并降低模型拟合难度,可以作为一种新的波段选择参考方法。结果表明采用近红外光谱分析方法对秸秆发酵生物量进行快速检测是可行的。  相似文献   

4.
王爽  黄敏  朱启兵 《光子学报》2014,40(3):428-432
提出了一种无信息变量消除和偏最小二乘投影分析相结合的苹果高光谱散射图像最优波段选择方法.经该算法提取后的波段降为全谱的26%,将选择后的波段作为输入变量建立了苹果硬度的偏最小二乘预测模型.预测均方根误差由6.00N降为5.73N,相关系数也有所提高,并与遗传算法作了比较.结果表明,该算法能有效消除原光谱矩阵中冗余的信息,且不存在遗传算法中的参量选择随机性等缺点.该算法为高光谱散射图像最优波段选择提供了一个理想的方法.  相似文献   

5.
王爽  黄敏  朱启兵 《光子学报》2011,40(3):428-432
提出了一种无信息变量消除和偏最小二乘投影分析相结合的苹果高光谱散射图像最优波段选择方法.经该算法提取后的波段降为全谱的26%,将选择后的波段作为输入变量建立了苹果硬度的偏最小二乘预测模型.预测均方根误差由6.00N降为5.73N,相关系数也有所提高,并与遗传算法作了比较.结果表明,该算法能有效消除原光谱矩阵中冗余的信息...  相似文献   

6.
应用近红外光谱技术,以偏最小二乘算法,计算预测了37种生药药材甲醇提取物的抗氧化活性。以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,考察、比较了光谱预处理方法对模型效果的影响,以预测误差均方根(RMSEP)和相对分析误差(RPD)考核了样本的预测效果,采用1,1-二苯基-2-苦肼基(DPPH)法进行了验证。研究表明,采用一阶导数+矢量归一化预处理法和筛选的近红外波段建模,预测性能最优,校正模型的R2为0.896 0,RMSECV为4.35%;预测样本的RMSEP为3.62%,RPD为2.38。近红外光谱分析技术便捷快速,可信度较高,可以用于生药抗氧化性质的整体评价。  相似文献   

7.
黄敏  朱晓  朱启兵  冯朝丽 《光子学报》2014,41(7):868-873
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4 nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法.  相似文献   

8.
基于高光谱图像的玉米种子特征提取与识别   总被引:6,自引:2,他引:6  
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法.  相似文献   

9.
波段筛选方法的选取以及随后的光谱特征波段的提取对高光谱模型效果的影响较大。为了快速准确检测羊肉的pH值,开展并讨论了利用两种特征波段筛选方法对羊肉pH值高光谱模型的影响研究。本研究采用二阶导数(2D)、多元散射校正(MSC)和中心化处理(mean-centering)相结合的方法对所提取纯肌肉部分的代表性光谱进行预处理,利用联合区间偏最小二乘(siPLS)和联合区间偏最小二乘结合遗传算法(siPLS-GA)对全波段473~1000 nm范围光谱进行特征波段的提取,并分别建立相对应特征波段范围羊肉pH的PLS预测模型,同时与全波段的PLS模型效果相比较。结果表明采用siPLS-GA提取的特征波长建立的PLS模型效果最优,其选取的特征波长点数为56,校正集相关系数(Rcal)和均方根误差(RMSEC)分别为0.96和0.043,预测集相关系数(RP)和均方根误差(RMSEP)分别为0.96和0.048。siPLS-GA方法既能够减少建模使用的光谱变量,又可以提高模型精度,因此利用高光谱图像技术结合siPLS-GA可以实现羊肉pH的特征波段筛选和快速准确检测。  相似文献   

10.
研究了基于可见-近红外光谱技术的发动机润滑油含水量快速检测方法。在获取光谱信息的基础上,提出了采用不同的光谱建模方法以提高检测精度和简化分析计算。分别采用主成分分析(PCA)和连续投影算法(SPA)方法进行模型输入变量的提取。SPA最终选择了476,483,544,925,933,938,952,970和974nm共9个波长为最优变量。基于SPA选择的变量,分别应用偏最小二乘回归(PLSR)和多元线性回归(MLR)建模。效果均优于全波段PLSR模型和PCA-PLSR模型。说明SPA选择的有效变量能够包含最重要的全波段光谱信息,同时可以去除无用的信息变量。为了进一步提高检测效果,采用LS-SVM分别基于SPA选择后的有效变量和全波段光谱进行建模。两个模型的预测确定系数(Rp2)均在0.9以上。SPA-LS-SVM的效果要优于全波段LS-SVM模型的效果。SPA-LS-SVM模型的Rp2达到了0.983,剩余预测偏差(RPD)值为6.963。表明可见-近红外光谱可以用于发动机润滑油含水量的检测。  相似文献   

11.
空-谱二维蚁群组合优化SVM的高光谱图像分类   总被引:1,自引:0,他引:1  
提出了一种空-谱二维特征蚁群组合优化支持向量机的高光谱图像分类算法。利用两类蚁群分别在光谱维空间和样本分布空间交替搜索最大类间距波段组合和异质样本,提取最优特征波段,降低了高光谱的波段信息冗余,去除训练样本中的异质样本,优化了训练样本特征空间分布。将蚁群组合优化后的高光谱图像和训练样本应用到支持向量机(SVM)分类器中,扩大了特征空间类间距,提高了SVM算法的分类精度。实验表明该算法总分类精度达95.45%,Kappa系数0.925 2,是一种分类精度较高的高光谱图像分类方法。  相似文献   

12.
戴天虹  李昊 《应用声学》2016,24(2):321-324
为了延长无线传感器网络(Wireless Sensor Network ,WSN)的生命周期,均衡各个节点间能量消耗,针对现有的WSN路由优化算法存在的问题,提出了一种基于改进蚁群算法的路由优化算法。首先通过对蚁群算法和遗传算法的优劣性比较,在蚁群算法的基础上,结合遗传算法的选择、交叉和变异的操作,从而提高蚁群算法的搜索速度和寻优能力。最优路径评价函数综合考虑节点能耗及节点的剩余能量,使剩余能量多的节点优先参与数据转发,均衡节点间的能量消耗。通过与经典蚁群算法及遗传算法的对比实验表明,随着数据转发轮数增加,改进的蚁群算法能耗小,剩余能量多,网络生命周期明显延长;随着整个网络运行时间的增长,改进的蚁群算法,节点均衡能耗性好,最优路径搜索的成功率也明显优于其他两种算法。  相似文献   

13.
张继荣  袁晓洁 《应用声学》2016,24(6):271-273, 285
本文提出一种基于改进蚁群算法的交通路径最优方法,首先根据图论的思想构建了城市交通网络模型,结合层次分析法考虑了道路长度、交叉口停滞、交通拥挤、道路容量、天气状况等五个主要因素。然后在MATLAB平台下,采用改进的蚁群算法对静态交通网络和动态交通网络分别进行最短路径的求解,最后进行了对比分析。研究结果表明,在综合考虑以上五种因素的情况下,动态交通网络下的路径最优算法能为出行者找到更准确更便捷的路线。  相似文献   

14.
光谱预处理方法选择研究   总被引:1,自引:0,他引:1  
复杂样品光谱信号往往会受到杂散光、噪声、基线漂移等因素的干扰,从而影响最终的定性定量分析结果,因此通常需要在建模前对原始光谱进行预处理。目前已有的光谱预处理方法包括很多种,如何寻找合适的预处理方法是很棘手的问题。一种途径是观察光谱信号特点选择预处理方法(visual inspection),另一种途径是根据建模性能的优劣反过来选择预处理方法(trial-and-error strategy)。前者无需建模,更具有解释性,但是有时会由于选择者主观的因素导致错误的结果;后者无需观察光谱特点,但需要考察大量的预处理方法,对大数据集比较费时。因此需要探讨哪种选择方式更科学与合理。本研究采用9组数据,通过对10种预处理方法的120种排列组合来探讨预处理的必要性及预处理方法的选择。首先,优化偏最小二乘(PLS)的因子数及一阶导数、二阶导数、SG平滑的窗口参数,连续小波变换(CWT)的小波函数和分解尺度。然后把无预处理及一阶导数、二阶导数、CWT、多元散射校正(MSC)、标准正态变量(SNV)、SG平滑、中心化、Pareto尺度化、最大最小归一化、标准化10种预处理方法按照背景校正、散射校正、平滑和尺度化的顺序进行排列组合,得到120种预处理及其组合方法。最后对不同数据及相同数据的不同组分分别进行120种预处理,分析光谱信号特点及预处理后PLS建模的预测均方根误差值(RMSEP)。结果表明,相比观察光谱信号特点,根据光谱与预测组分的建模效果可以更为准确地选择最佳预处理方法。对于多数数据,采用合适的预处理方法可以提高建模效果;对于不同的数据集,因为其数据集信息和复杂性不同,所以其最佳预处理方法也不同;对于相同数据集,即使光谱相同,但不同组分的预处理方法也不相同。因此,不存在普适性的最佳预处理方法,最佳预处理方法除了与光谱有关,还与预测组分有关。通过对已有预处理方法按照预处理目的进行分类再排列组合是选择最佳预处理方法的一种有效途径。  相似文献   

15.
蚁群算法在近红外光谱定量分析中的应用研究   总被引:2,自引:0,他引:2  
蚁群算法是新近发展的基于群体智能的仿生优化算法,它模拟蚂蚁的觅食行为来解决复杂的组合优化问题。蚁群算法的优点是智能搜索、全局优化、鲁棒性、分布式计算和容易与其他算法相结合等。近红外光谱定量分析技术在很多领域得到广泛的应用,而其关键技术环节之一是建立近红外光谱测量数据的多元校正模型。文章将蚁群算法应用于近红外光谱定量分析中,建立了谷物样品的傅里叶变换近红外漫反射光谱和谷物中蛋白质含量的定量分析模型,得到了较好的结果。校准集的相关系数与相对标准偏差分别为0.943和3.41%,预测集的相关系数与相对标准偏差分别为0.913和4.67%。  相似文献   

16.
基于高光谱的水体BOD含量模拟估算   总被引:1,自引:0,他引:1  
高光谱技术由于满足连续性与光谱可分性的要求,具有能够区别同一种地物不同类别的能力,且光谱数据获取速度快,操作简易,在监测水体分布状况、水体指标上具有突出成就.生化需氧量BOD是评价水污染的重要指标,现行常规的测量方法为五日培养法,这种方法消耗试剂、操作复杂、受干扰因素多、测定时间长、不能及时反映水质变化、无法及时有效地...  相似文献   

17.
基于北京市通州、顺义两区52个潮土样品高光谱数据,利用离散小波多尺度分析技术对其进行处理分析。首先将光谱按六种尺度进行分解,然后将各尺度分解数据与土壤有机质含量进行相关性分析,并筛选敏感波段,最后利用偏最小二乘法构建土壤有机质含量估测模型。结果表明:土壤光谱反射率经小波变换后,在参与建模的特征波段中,近红外波段居多,即近红外波段估测有机质含量的贡献高于可见光波段;低频信息对有机质含量的估测能力优于高频信息;高频信息对土壤有机质含量的估测精度随光谱分辨率降低而降低;与常用光谱变换算法相比,小波变换分析法在一定程度上提高了土壤光谱对有机质含量的估测能力,其低频信息与高频信息构建的最优模型预测精度均较高,低频信息的R2=0.722,RMSE=0.221,高频信息的R2=0.670,RMSE=0.255。  相似文献   

18.
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1-L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R2验证=0.625,RMSE=0.048,RPD=1.238(一阶微分);R2验证=0.678,RMSE=0.037,RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。  相似文献   

19.
光谱端元选择是高光谱数据解混分析的重要前提。在各种端元选择算法中,N-FINDR算法因其自动性和高效性受到广泛欢迎。然而,该算法需要进行数据降维预处理,且包含大量的体积计算导致该算法的运算速度较慢,限制了该算法的应用。为此提出基于线性最小二乘支持向量机的N-FINDR改进算法,该算法无需降维预处理,且采用低复杂度的距离尺度代替复杂的体积尺度来加速算法。此外还提出对野值点施加有效控制以赋予算法鲁棒性,以及利用像素预排序方法来降低算法的迭代次数。实验结果表明,基于线性最小二乘支持向量机的改进N-FINDR算法在保证选择效果的前提下复杂度大大降低,鲁棒性方法和像素预排序方法则进一步提高了算法的选择效果和选择速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号