首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
不同粒径对土壤有机质含量可见—近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM 的光谱预测及仪器开发有很大的影响,为了明确不同粒径对 SOM 预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1mm 五种均匀粒径及<1mm 混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱 R进行倒数IR、对数 LR、一阶导数 FDR等3种光谱变换并分析与SOM 含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM 含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540nm 波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR 变...  相似文献   

2.
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法.  相似文献   

3.
研究了基于可见-近红外光谱技术的发动机润滑油含水量快速检测方法。在获取光谱信息的基础上,提出了采用不同的光谱建模方法以提高检测精度和简化分析计算。分别采用主成分分析(PCA)和连续投影算法(SPA)方法进行模型输入变量的提取。SPA最终选择了476,483,544,925,933,938,952,970和974nm共9个波长为最优变量。基于SPA选择的变量,分别应用偏最小二乘回归(PLSR)和多元线性回归(MLR)建模。效果均优于全波段PLSR模型和PCA-PLSR模型。说明SPA选择的有效变量能够包含最重要的全波段光谱信息,同时可以去除无用的信息变量。为了进一步提高检测效果,采用LS-SVM分别基于SPA选择后的有效变量和全波段光谱进行建模。两个模型的预测确定系数(Rp2)均在0.9以上。SPA-LS-SVM的效果要优于全波段LS-SVM模型的效果。SPA-LS-SVM模型的Rp2达到了0.983,剩余预测偏差(RPD)值为6.963。表明可见-近红外光谱可以用于发动机润滑油含水量的检测。  相似文献   

4.
提出一种利用可见/近红外光谱技术进行杉木林土壤全氮测定的方法.利用不同方法实现了土壤光谱的预处理,并以偏最小二乘回归算法(PLS)建立土壤氮含量估测模型对其进行比较分析,发现小波除噪结合多远散射校正能最有效地消除原始光谱的噪声与背景信息,此时PLS模型校正集与预测集R2分别为0.891与0.885.为优化模型,对预处理后的光谱数据采用主成分分析法(PCA)降维,以最小二乘支撑向量机回归算法(LS-SVR)建立了土壤氮含量估测模型,其校正集与预测集R2分别提高至0.921与0.917,具有比PLS算法更高的精度.结果表明:以可见/近红外光谱技术进行林地土壤氮含量快速监测是可行的,其中小波去噪结合多元散射校正系光谱预处理的优选方法,而LS-SVR则是建模的优选方法.  相似文献   

5.
黄酒糖度预测的可见-近红外光谱方法研究   总被引:5,自引:0,他引:5  
刘飞  何勇  王莉 《光学学报》2007,27(11):2054-2058
提出了用可见近红外光谱结合不同化学计量学方法预测黄酒糖度的新方法。用240个黄酒样本建模,60个样本进行预测。通过对光谱数据进行平滑、变量标准化及一阶导数等预处理,建立并比较了偏最小二乘法,小波变换与偏最小二乘法相结合,主成分分析与人工神经网络相结合以及主成分分析与最小二乘支持向量机相结合四种不同建模方法的预测精度,以相关系数r、预测标准差、偏差等为评判标准,得到黄酒糖度预测的最优模型为最小二乘支持向量机模型。该模型对黄酒糖度预测的相关系数为0.962、预测标准差为0.021、偏差为-0.001,获得了理想的预测精度。结果表明应用可见近红外光谱对黄酒糖度进行预测是可行的,且最小二乘支持向量机模型能得到最优的预测结果。  相似文献   

6.
土壤养分直接关系到作物产量与品质状况,然而传统化学方法检测存在化学试剂消耗大、耗时费力等问题,不能满足精细农业的需求。快速获取土壤养分信息是发展精细农业、绿色农业的关键,想要了解土壤肥力状况,必须先了解有机质和总氮的含量状况。许多研究表明,长波近红外光谱被广泛应用于土壤检测领域,然而短波可见/近红外光谱在土壤有机质和总氮的研究上却非常罕见。以江西省吉安市安福县和南昌市新建区的四个村庄作为研究区,根据2×2网格法采集了深度为10~30cm的棕壤、红壤和水稻土三种最为典型的土壤样品共180份。经过研磨、风干等处理后用四分法均匀划分为两份,用于测定样品光谱信息和理化信息。将土壤样品按照2∶1(120∶60)划分为建模集和预测集。考虑到首尾端波段噪声较大,故去除325~349和1 051~1 075nm波段,将350~1 050nm波段用于光谱分析。通过连续投影算法(SPA)筛选出有机质12个特征波长点,总氮11个特征波长点,考虑到土壤光谱信息与土壤理化性质之间可能存在非线性联系,建立全波段与特征波长的线性偏最小二乘回归(PLSR)模型和非线性最小二乘支持向量机(LS-SVM)模型对土壤有机质...  相似文献   

7.
应用可见-近红外光谱技术进行定量分析时,变量选择起着十分重要的作用。不同土壤样品之间的预测机制可能存在很大差异,当待测样品出现新的特征信息时,基于建模集选择的特征变量不一定能够很好地代表待测样品的有效信息,继续采用原有特征变量建模就易导致预测误差增大。该研究采用递归变量选择方法在预测过程中递归更新土壤全氮与有机质的特征变量,以保持预测模型的鲁棒性;比较了偏最小二乘法(PLS),递归偏最小二乘法(RPLS)和不同递归变量选择方法,如: 变量投影重要性与RPLS相结合(VIP-RPLS), VIP-RPLS, 无信息变量消除法与PLS相结合(UVE-PLS)对于土壤全氮与有机质含量的预测效果。所用195份土壤样品来自浙江省文成县8个乡镇的农田。土壤样品随机分成两部分,一部分作为建模集包含120份样品,另一部分作为预测集包含75份样品。结果表明: VIP-RPLS建立的模型对于预测土壤全氮与有机质含量取得了最优的结果,获得的决定系数(R2)分别为0.85与0.86,获得的预测相对分析误差(RPD)分别为2.6%与2.7%。说明VIP-RPLS通过不断更新模型的特征变量,能够捕获新加入到建模集样品的有效信息。相比于本研究中的其他方法,VIP-RPLS对于土壤全氮与有机质含量具有更高的预测精度。  相似文献   

8.
为探讨基于可见一近红外光谱技术快速检测牛奶中是否含有三聚氰胺的可行性.文章通过往液态奶中添加不同含量的三聚氰胺,共制备样本160个.利用Handheld Field Spec光谱仪获取样本光谱,其后采用不同的预处理方法对光谱数据进行预处理,然后分别建立数学模型,比较模型的好坏,得到采用移动平均平滑作为数据的预处理方法较好.从160个样本中随机的取出120个样本建模,剩下的40个样本作为独立的验证集.采用偏最小二乘回归法(PLS)和最小二乘支持向苗机法(LS-SVM)方法分别建立判别分析模型,利用独立的验证集对判别模型进行了预测验证.预测结果的预测相关系数(R2)分别为0.917 4(PLS)和0.910 9(LS-SVM),预测标准误差(RMSEP)分别为0.030 4(PLS)和0.046 7(LS-SVM).研究结果表明近红外反射光谱可以作为一种快速检测牛奶中三聚氰胺的方法.  相似文献   

9.
土壤有机质是土壤肥力的物质基础,其含量的高低是评价土壤肥力的重要标志.土壤有机质组分根据其溶解性可分为胡敏素(HM)、胡敏酸(HA)、富里酸(FA),不同组分的肥力特性差异显著,因此,土壤有机质组分数据可更加全面、客观的反映土壤肥力状况.传统土壤土壤有机质及组分的测定工序繁杂,效率低下且时效性差,大量研究表明高光谱技术...  相似文献   

10.
应用近红外光谱技术实现了油菜叶片中丙二醛(MDA)含量的快速无损检测.对90个油菜叶片样本进行光谱扫描,用60个样本建模,30个样本验证.经过平滑、变量标准化、一阶及二阶求导、去趋势等预处理后,建市了MDA预测的偏最小二乘法(PLS)模型.将PLS提取的有效特征变馈(LV)和连续投影算法(SPA)提取的有效波长作为最小二乘-支持向量机(LS-SVM)的输入变量,分别建立了LV-LS-SVM和SPA-LS-SVM模型.以预测集的预测相关系数(r),预测标准偏差(RMSEP)作为模型评价指标.结果表明,油菜叶片中MDA含量预测的最优模型为LV-LS-SVM模型,LV-LS-SVM在去趋势处理后的预测效果为r=0.999 9,RMSEP=0.530 2;在二阶求导处理后的预测效果为r=0.999 9,RMSEP=0.395 7.说明应用光谱技术检测油菜叶片中MDA的含最是可行的,并能获得满意的预测精度,为油菜大田生长状况的动态连续监测提供了新的方法.  相似文献   

11.
可见近红外非成像光谱分析技术已被广泛用于土壤有机碳(SOC)含量估测,然而该技术的使用受土壤粗糙度的影响,对样本的前处理要求较高,导致模型的实用性受限。针对这一问题,以美国爱荷华州农田土壤为研究对象,使用成像及非成像光谱仪获取土壤样本研磨前后的可见近红外反射光谱,采用去包络线(CR)、吸光度变换(AB)、S-G平滑(SG)、标准正态变换(SNV)、多元散射校正(MSC)5种光谱预处理手段,利用偏最小二乘回归(PLSR)和支持向量回归(SVR)算法构建并对比土壤SOC光谱估算模型,探究利用成像光谱数据估测高粗糙度样本SOC含量的可行性。实验结果表明,使用成像光谱数据能够实现高粗糙度样本的SOC含量估算,而使用非成像光谱数据则无法估算高粗糙度样本的SOC含量;基于成像光谱数据建立的高粗糙度SOC最优PLSR估算模型R2能够达到0.739以及最优SVR估算模型R2为0.712,而基于非成像光谱数据建立的高粗糙度SOC最优PLSR和SVR估算模型R2仅仅分别为0.344和0.311。基于AB,SG,SNV和MSC这4种预处理手段之后的成像光谱数据建立的土壤样本研磨前的PLSR模型性能优于样本研磨之后建立的PLSR模型,而SVR模型性能正好相反。而对于非成像光谱数据来说,土壤样本研磨后建立PLSR和SVR模型精度总是强于样本研磨前建立的模型精度。对于这两种光谱数据和两个估算模型而言,不同的光谱预处理方法提高模型估算精度的能力不同。土壤样本研磨前后,基于成像光谱数据建立的PLSR和SVR模型性能均优于非成像光谱数据所构建的模型。成像光谱技术能够增强高粗糙度土壤样本可见近红外光谱与SOC的相关性,从而提高模型估算精度;能够克服土壤粗糙度的影响;为野外大尺度估测SOC含量提供了新的手段。  相似文献   

12.
针对近红外光谱检测中存在的模型传递问题,即在某一测试环境或仪器上建立的定性定量预测模型不适用于其他检测环境或仪器所采集的数据,该研究以土壤有机质为研究对象,采用FIR算法开展了此方面的研究工作。首先,在山西境内不同地方采集了59个壤土土壤样本,选用ASD公司的FieldSpec3光谱检测仪,分两批次对土壤样本进行了近红外光谱检测。第一批测试土样称为“源机样本”为50个,第二批测试土样称为“目标机样本”为9个;然后,随机选取“源机样本”中的41个样本作为校正样本,其余9个样本作为预测样本,采用偏最小二乘(PLS)定量预测方法建立了土壤有机质的定量预测模型,预测样本的预测相关系数为0.961,预测样本标准差(RMSEP)为0.600%,预测样本标准偏差(SEP)为0.597%,说明采用该方法可以很好地预测“源机样本”。当采用上述模型对9个“目标机样本”进行预测时,发现其预测相关系数为负值,表明采用该模型直接对“目标机样本”进行预测是不可行的。最后,采用FIR模型传递算法对“目标机样本”进行了处理,当窗口大小为p=516时预测效果提高,预测相关系数为0.706,RMSEP为0.662%,SEP为0.430%,说明FIR可以实现不同测试条件下获得谱图的传递,实现模型的共享。  相似文献   

13.
土壤有机质(SOM)是植物生长必需的营养物质,也是土壤属性检测的重要参数。快速、高效地获取土壤有机质信息对精细农业的发展具有重要意义。近红外光谱技术具有快捷、低成本等优势,被广泛应用到土壤有机质的测量中,然而土壤水分在近红外光谱(780~2 500 nm)中具有很强的吸收特性,对土壤有机质的检测形成了一定的干扰。分析了50个土样在不同含水率(约17%,15%,10%,5%和干土)下的近红外吸光度谱图特性,利用水分敏感波段2 210, 1 415和1 929 nm构建了水分修正系数(MDI),并在此基础上对不同含水率土样进行了重构,以消除水分对土壤有机质预测模型的影响。结果如下:(1)经MDI校正重构后的吸光度谱图与对应的干土土样吸光度谱图相近,能较好地反映其干土土样的吸光度谱图特性。(2)采用偏最小二乘(PLS)法建立了干土土样的有机质定量预测模型,并对重构后的不同含水率土样进行了预测,其统计参数分别为:预测相关系数(RP)0.90,预测标准误差(SEP)0.802和预测均方根误差(RMSEP)1.09;与原始未经MDI校正的预测结果相比,相关系数上升了0.032,预测标准误差降低了0.113,预测均方根误差降低了0.25。结果表明,本研究提出的水分校正算法可以降低水分对土壤有机质预测的干扰,提高利用干土土样有机质定量预测模型预测不同含水率土样的精度,可为基于近红外光谱技术的土壤有机质实时测定技术的推广提供理论依据。  相似文献   

14.
基于全谱数据挖掘技术的土壤有机质高光谱预测建模研究   总被引:4,自引:0,他引:4  
可见/近红外高光谱技术与建模方法是当前土壤近地传感器研究领域的重要方向,可应用于土壤养分信息的快速获取和农田作物的精确施肥管理。以浙江省水稻土为研究对象,利用以非线性模型为核心的数据挖掘技术,包括随机森林、支持向量机、人工神经网络等方法分别建立了不同建模集和验证集的原始光谱与有机质含量的估测模型。结果表明:研究比较的1∶1,3∶1和全部样本建模并全部验证的三种样本模式划分对建模的结果有一定的影响。相较于目前常用的偏最小二乘回归(PLSR)建模方法而言,非线性模型RF和SVM也取得了较好的建模精度,三种模式下其RDP值均大于1.4。特别是采用SVM建模方法所得模型具有很好的预测能力,模式二下其RDP值达到2.16。同时引入ANN方法改进建立的PLSR-ANN方法显著提高了PLSR的模型预测能力。  相似文献   

15.
在基于可见-近红外反射光谱的土壤养分速测技术中,不同类型土壤间的模型转移是目前亟需解决的关键问题和难点。以土壤全氮为研究对象,探讨了两种不同土壤间的模型传递方法及其效果。以青岛李村河畔土壤为主样品,通过分段直接矫正结合斜率/截距修正(PDS-S/B)、分段直接矫正结合线性插值(PDS-LI)、典型相关性分析结合斜率/截距修正(CCA-S/B)、典型相关性分析结合线性插值(CCA-LI)、直接矫正结合斜率/截距修正(DS-S/B)、直接矫正结合线性插值(DS-LI)等算法,进行模型转移,实现对青岛浮山山麓土壤全氮含量不同程度的预测。其中,PDS-S/B的模型转移效果最好,均方根误差、平均相对误差、最大相对误差均最小,分别为0.04,6.6%,19.0%。主、从样品经遗传算法提取特征变量后再进行模型转移,相比无任何前处理的模型转移,均有不同程度的提高,其中LI相关的模型转移方法比S/B相关的方法提高的程度更大。研究了不同样品在同一仪器、相同测试环境下的土壤养分的模型传递问题,初步探讨了同一仪器共享一个土壤养分光谱模型的可能性,这将从根本上提高速测效率,有利于光谱技术在土壤养分速测中的推广应用。  相似文献   

16.
土壤有机质(SOM)含量是衡量土壤质量高低的重要指标,可以用高光谱快速测定。在以往研究中,估算模型多以特征波段与线性经验模型为基础进行构建,较少考虑波段间信息冗余和共线性,预测效果不很理想并难以进行推广。为最大化消除波段信息噪声,提高模型预测精度,选取莱州湾南岸滨海平原为研究区,系统采集了111个土壤样本和实测高光谱数据(325~1 075 nm),并测试了土壤样本的有机质含量作为因变量;通过主成分分析(PCA)将实测光谱信息降维为6个主成分,并提取水分、植被光谱特征指数(DI),以此作为自变量;最后建立多元逐步线性回归(MLR)和BP神经网络(BPN)预测模型,分析不同模型对土壤有机质预测的效果。结果表明:①经过主成分的波段信息分析判别提取出6个主成分,可以表征叶绿素残留物、盐分、腐殖酸、物化矿渣和微地貌的光谱特征。②基于6个主成分作为自变量所建立的BPN模型预测精度优于MLR模型,他们的R2分别为0.704和0.643。将水分和植被光谱特征指数作为自变量增加到预测模型后,MLR和BPN的预测精度分别提高了6.1%和5.2%,R2达到0.712和0.764;③将光谱主成分和光谱特征指数作为自变量的BPN模型进行土壤有机质预测可得到精度较高的预测结果,在土壤有机质的预测与制图中具有一定的应用潜力。  相似文献   

17.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

18.
已有的土壤有机质含量估测模型大多以光谱特征波段、线性和非线性模型为基础,较少考虑通过拓展样本数据建模集来提高模型的估测能力.为进一步提高土壤有机质高光谱反演模型估测精度,提出利用生成式对抗网络(GAN)合成伪高光谱数据和有机质含量的动态估测模型.选取湖南省长沙市及周边区域的水稻田为研究对象,采集土样和实测高光谱数据(3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号