首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In three strong inorganic acidic conditions (HNO(3), HCl and H(2)SO(4)), we have prepared a series of air-water interfacial zirconium dioxide (ZrO(2)) films at normal temperature via a self-assembly technique, by using dodecylbenzenesulfonic acid (DBSA) as template and Zr(OC(4)H(9))(4) as precursor. X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis and fluorescence spectra have been used to characterize the ZrO(2) films. Results show that a number of worm-like mesoporous nanodisks and ambiguously mesoporous nanodisks are observed in the ZrO(2) films with NO(3)(-) and SO(4)(2-) counter-ions, respectively. Remarkably, a great many perfect target-like multiring nanodisks are obtained in the ZrO(2) sample with Cl(-) counter-ion. The self-assembly mechanism for ZrO(2) nanodisks has been purposely discussed. A model based on the structural changes with respect to the influence of counter-ions on the self-assembly of ZrO(2) nanodisks is therefore proposed. In addition, the structural changes for the ZrO(2) films self-assembled at a higher temperature have been discussed in combination with the influence of counter-ions.  相似文献   

2.
Mesostructured microspheres formed by aerosol-assisted self-assembly of a gelable block copolymer, poly(3-(triethoxysilyl)propyl methacrylate)- block-polystyrene (PTEPM -b-PS), were studied by a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). When the copolymer composition was changed, the spheres with different internal patterns, such as onion-like lamella and curved cylinder, were obtained. Through a self-gelation process of PTEPM domains, novel organic/inorganic hybrid spheres with an internal tunable patterned structure were prepared. Since only PTEMP domains were cross-linked, the hybrid spheres could be further disintegrated by dispersion in a good solvent of PS. As a result, novel organic/inorganic hybrid nano-objects such as arched plates and cylinders were prepared.  相似文献   

3.
Self-consistent field theory is applied to a film of cylindrical-forming block copolymer subject to a surface field which tends to align the cylinders parallel to electrical plates, and to an external electric field tending to align them perpendicular to the plates. The Maxwell equations and self-consistent field equations are solved exactly, numerically, in real space. By comparing the free energies of different configurations, we show that for weak surface fields, the phase of cylinders parallel to the plates makes a direct transition to a phase in which the cylinders are aligned with the field throughout the sample. For stronger surface fields, there is an intermediate phase in which cylinders in the interior of the film, aligned with the field, terminate near the plates. For surface fields which favor the minority block, there is a boundary layer of hexagonal symmetry at the plates in which the monomers favored by the surface field occupy a larger area than they would if the cylinders extended to the surface.  相似文献   

4.
This paper describes the self-assembly of small objects--polyhedral metal plates with largest dimensions of 10 to 30 microm--into highly ordered, three-dimensional arrays. The plates were fabricated using photolithography and electrodeposition techniques, and the faces of the plates were functionalized to be hydrophobic or hydrophilic using self-assembled monolayers (SAMs). Self-assembly occurs in water through capillary interactions between thin films of a hydrophobic liquid (a liquid prepolymer adhesive) coated onto the hydrophobic faces of the plates; coalescence of the adhesive films reduces the interfacial free energy of the system and drives self-assembly. By altering the size and surface-patterning of the plates, the external morphologies of the aggregates were varied. Curing the adhesive furnished mechanically stable aggregates that were characterized by scanning electron microscopy (SEM). For assemblies formed by plates partially composed of a sacrificial material, a subsequent etching step furnished fully open, three-dimensional microstructures. This work validates the use of capillary interactions for three-dimensional mesoscale self-assembly in the 10-microm-size regime and opens new avenues for the fabrication of complex, three-dimensional microscructures.  相似文献   

5.
采用硝酸锌、五氧化二钒和氢氧化钠作为反应物,通过一个简单的CTAB辅助的水热方法制备了Zn3(OH)2V2O7·2H2O纳米片.运用XRD,ICP-AES,FTIR,HRTEM,EDS,FE-SEM对产物的晶相和形貌进行了表征.结果表明CTAB在控制产物的形貌、尺寸分布和自组装过程中起着关键作用.同时我们研究了产物的晶体生长行为和自组装过程.  相似文献   

6.
We describe the first study on the self-assembly behavior of Janus cylinders at liquid/liquid interfaces. The Janus cylinders are characterized by a phase separation along the major axis into two hemicylinders of different wettability. The pendant drop technique and microscopic imaging were used to characterize the adsorption behavior and self-assembly of Janus cylinders at perfluorinated oil/dioxane and perfluorinated oil/dimethyl sulfoxide interfaces. According to the evolution of the interfacial tension and a series of TEM images taken during the cylinder adsorption, we will specify the characteristics of early to late stages of the Janus cylinder adsorption at a liquid-liquid interface and discuss the effect of Janus cylinder length and their concentration. We also establish that the broken symmetry of the corona leads to significantly higher interfacial activity as compared to homogeneous core-shell cylinders. The adsorption is characterized by three different adsorption stages: first, free diffusion to the interface, followed by continuous adsorption of cylinders including ordering and domain formation and, finally, additional packing with a rearrangement of domains and formation of a loose multilayer system.  相似文献   

7.
黄建花 《高分子科学》2016,34(7):838-849
The self-assembly behavior of sphere-forming R5C30R5 triblock copolymers within a planar slit is studied by performing dissipative particle dynamics simulations. A sequence of novel structures which are not observed in bulk are formed within slits, including wetting layers, island-like structure, parallel cylinders, perpendicular cylinders and cross-cylindrical structures. Perpendicular cylinders are always formed before the increase in the layers of parallel cylinders. A phase diagram of the assembled structures with respective to the slit property and height is thus presented. The rod length is found to have a significant impact on the rod alignment, and a disordered-ordered transition of rod orientation occurs with an increase in the length of rod blocks. Some special structures, such as parallel half-cylinders and arrowhead-shaped morphology, are observed when the rod length increases to a certain extent. Our results show that the property and height of the slit and rod length all influence the self-assembly of rod-coil-rod triblock copolymers.  相似文献   

8.
采用硝酸锌、五氧化二钒和氢氧化钠作为反应物,通过一个简单的CTAB辅助的水热方法制备了Zn3(OH)2V2O7·2H2O纳米片。运用XRD,ICP-AES,FTIR,HRTEM,EDS,FE-SEM对产物的晶相和形貌进行了表征。结果表明CTAB在控制产物的形貌、尺寸分布和自组装过程中起着关键作用。同时我们研究了产物的晶体生长行为和自组装过程。  相似文献   

9.
By tailoring capillary interactions at a fluid–fluid interface, a hierarchical two-dimensional self-assembly of hexagonal millimeter-sized poly(dimethylsiloxane) plates has been demonstrated (see picture). The strength and direction of capillary forces between plates was controlled by patterning of the surfaces of the plates to be hydophobic or hydrophilic. The thick lines indicate hydrophobic faces whose mutual attraction forms the basis of capillarity.  相似文献   

10.
Silver nanodisks, having two different sizes, and spherical particles are synthesized by soft chemistry. By using centrifugation, nanodisks are mainly selected. The experimental absorption spectra of these nanodisks with different sizes are compared to those simulated using the discrete dipole approximation method. For small nanodisk sizes, the nanodisk shape is neglected and the simulated spectra closest to the experiments are obtained by assuming a spheroidal particle. Conversely, for larger nanodisks, the precise geometries represented by snip and aspect ratio are needed for good agreement between experiments and simulations.  相似文献   

11.
The creation of smart, self-assembling materials that undergo morphological transitions in response to specific physiological environments can allow for the enhanced accumulation of imaging or drug delivery agents based on differences in diffusion kinetics. Here, we have developed a series of self-assembling peptide amphiphile molecules that transform either isolated from molecules or spherical micelles into nanofibers when the pH is slightly reduced from 7.4 to 6.6, in isotonic salt solutions that simulate the acidic extracellular microenvironment of malignant tumor tissue. This transition is rapid and reversible, indicating the system is in thermodynamic equilibrium. The self-assembly phase diagrams show a single-molecule-to-nanofiber transition with a highly concentration-dependent transition pH. However, addition of a sterically bulky Gd(DO3A) imaging tag on the exterior periphery shifts this self-assembly to more acidic pH values and also induces a spherical micellar morphology at high pH and concentration ranges. By balancing the attractive hydrophobic and hydrogen-bonding forces, and the repulsive electrostatic and steric forces, the self-assembly morphology and the pH of transition can be systematically shifted by tenths a pH unit.  相似文献   

12.
采用模拟退火和Monte Carlo方法研究体相形成柱状相的双嵌段共聚物薄膜在平板受限和溶剂蒸发条件下的自组装,特别关注柱状相形貌的取向.对于平板受限下的薄膜,研究了表面选择性、溶剂选择性和膨胀程度对柱状相取向的影响.对于溶剂蒸发的薄膜,研究了表面选择性和薄膜厚度对柱状相取向的影响,并讨论了柱状相取向的机理.结果表明,薄膜内存在中性溶剂时形成垂直柱形貌的表面选择性范围较小;存在亲长嵌段的溶剂时形成垂直柱形貌的表面选择性范围较大.溶剂蒸发后薄膜生成垂直柱形貌的参数范围较热退火下增大;柱状相取向取决于蒸发过程中体系由球状相演化为柱状相时的薄膜厚度与体相周期的匹配性.  相似文献   

13.
The self-assembly of block copolymers in selective solvents represents a powerful approach to functional core-shell nanoparticles. Crystallization of the core can play a critical role in directing self-assembly toward desirable, nonspherical morphologies with low mean interfacial curvature. Moreover, epitaxial growth processes have been implicated in recent advances that permit access to monodisperse cylinders, cylindrical block comicelles with segmented cores and/or coronas, and complex hierarchical architectures. However, how the core-forming block crystallizes in an inherently curved nanoscopic environment has not been resolved. Herein we report the results of synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) studies of well-defined, monodisperse crystalline-coil polyisoprene-block-polyferrocenylsilane cylindrical micelles aligned in an electric field. WAXS studies of the aligned cylinders have provided key structural information on the nature of the PFS micelle core together with insight into the role of polymer crystallinity in the self-assembly of these and potentially related crystalline-coil block copolymers.  相似文献   

14.
掺铟氧化锌纳米盘的制备、结构及性质研究   总被引:3,自引:0,他引:3  
热蒸发Zn、In2O3和C粉混合物, 在没有催化剂的条件下制备出掺铟氧化锌纳米盘. 纳米盘呈六边形或十二边形, 均是结晶完好的纤锌矿结构的单晶, 对角线长度约1~3 μm , 厚度40~100 nm. 纳米盘的生长是由自催化固-液-气(V-L-S)机理控制, 在实验条件下Zn和In的液滴抑制纳米盘 [0001]方向的生长. EDS分析表明, 六边形纳米盘和十二边形纳米盘中In的含量相近, 约为2.2%. 室温光致发光谱显示掺杂后的紫外发射峰位稍有蓝移, 同时半高宽(HWHM)变大, 没有观察到绿光发射峰位.  相似文献   

15.
We report an unusual strategy for synthesizing patchy nanoparticles (NPs) by controlling the orientation of the molecules that form the NPs. This is realized by synchronous polymerization and crystallization of liquid crystal (LC) monomers during scalable precipitation polymerization. The resulting NPs are cylinders with highly uniform shapes and have only a single LC domain. The patchy properties originate from the discrepancy of surface chemical compositions on flat and side surfaces and can be switched on and off by solvent. Extra colloidal blocks can be grown onto the patches, resulting in highly uniform triblock patchy dumbbells, which have integrated optical properties, and as demonstrated, show triple-mode optical authentication in anti-counterfeiting labels or patterns. We also demonstrate that the triblock patchy cylinders are attractive building blocks for long LC rods or porous colloidal materials through polymerization-induced self-assembly.  相似文献   

16.
Amphoteric polyurethane (APU) samples used in this paper were composed of hydrophobic soft segments and pendent -COOH and -CH(2)N(CH(3))(2) groups on the hard segments, which present the properties of both amphoteric polyelectrolytes and amphiphilic block copolymers. APU macromolecules can self-assemble into micelles in acidic and basic aqueous media by hydrophobic/hydrophilic interaction. The self-assembly behavior of APU in acidic and basic media was studied by transmission electron microscopy and light scattering methods. The spherical and hollow micelles of APU were observed respectively in acidic and basic aqueous media. The results indicate that the size and size distribution of APU self-assembly micelles largely depend on the ratio of -COOH to -CH(2)N(CH(3))(2) groups, density of ionizable groups, concentration of APU, and types of acid and base in the media.  相似文献   

17.
Nanostructures of polyaniline (PAni) and polypyrrole (PPy) with controlled morphologies have been synthesized on atomically flat surfaces using adsorbed surfactant molecules as templates. Atomic force microscopy (AFM) has been used to investigate polymer film formation on highly oriented pyrolytic graphite (HOPG) and chemically modified HOPG. Morphological control over the resulting polymer film is possible by the addition of coadsorbing molecules, manipulation of the length of the surfactant hydrophobe, or by changing the surface chemistry of the adsorbing substrate. Phase transitions between spheres, cylinders/wires, and featureless films have been observed which exactly parallel transitions between spheres, cylinders, and flat layers in the adsorbed surfactant. Parallel arrays of PAni nanowires can be synthesized with alignment evident over large areas in a simple self-assembly technique in which fabrication and arrangement take place simultaneously. Such a technique in which one can engineer sub-100-nm-ordered nanoscale pi-conjugated polymer structures of a desired shape by a simple self-assembly process presents potential as templates, sensors, and microelectronic devices.  相似文献   

18.
Cl-doped ZnO nanodisks were grown on a Si(111) substrate using a thermal evaporation method. The prepared nanodisks exhibited a hexagonal shape with an average thickness of 50 nm and average diagonal of 270 nm. In addition, undoped ZnO disks with hexagonal shape were grown under the same conditions, but the sizes of these undoped ZnO disks were on the micrometer order. A possible mechanism was proposed for the growth of the Cl-doped ZnO nanodisks, and it was shown that the Cl1− anions play a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed an extension in the crystal lattice of ZnO because of the presence of chlorine. In addition, these nanodisks produced a strong photoluminescence emission peak in the ultraviolet (UV) region and a weak peak in the green region of the electromagnetic spectrum. Furthermore, the UV peak of the Cl-doped ZnO nanodisks was blueshifted with respect to that of the undoped ZnO disks.  相似文献   

19.
A postsynthetic self-assembly system was designed to investigate a construction process from suspended polyaniline (PANI) molecules to condensed aggregates. The conventionally synthesized PANI was dissolved in polar solvent and introduced into acidic medium with electrolytes similar to the aniline chemical oxidative polymerization (COP) medium. In this way, reaction interference that is usually encountered in the COP process could be avoided, and influences of medium conditions including organic electrolytes on the self-assembly behaviors of PANI were studied. It was discovered that, in a static aqueous medium with moderate pH and rich electrolytes, PANI molecules composed of bulk aggregates could self-assemble into well-dispersed nanoparticles with few structural changes. Electrostatic force is considered to dominate the self-assembly of PANI molecules as compared with other noncovalent interaction or the effect of soft templates such as ionic liquid and surfactant. The results are supposed to provide better understanding on the formation mechanism of micro/nanostructured PANI.  相似文献   

20.
Double-hydrophilic block copolymer (DHBC)-directed mineralization is investigated by dissipative particle dynamics (DPD) simulation. By mineralization, we refer to the formation of inorganic crystals from the solution. In the current study, the DHBCs are modeled as chains of A and B blocks with repulsion between unlike blocks, while the mineralization is approximated by aggregation of hydrophobic nanoparticles from the solution. Depending on the relative concentrations of nanoparticles and DHBC, dispersed spherical aggregates, hexagonally packed cylinders, and ordered lamellae structures are obtained. The structures formed are seen to be controlled by competing forces between aggregation of nanoparticles, the interaction of DHBC with nanoparticles, and the self-assembly of DHBC in the solution. The time evolutions of hexagonally packed cylinders and ordered lamellae are studied. For the development of cylinders, nanoparticles first aggregate into orientationally disordered small cylinders, then these cylinders slowly grow into hexagonally packed long cylinders. For the development of ordered lamellae, nanoparticles first form a disordered structure, then grow into disordered lamellae, and at last evolve into ordered lamellae. The simulation demonstrates that addition of DHBC can effectively control the aggregation of inorganic particles and lead to formation of a variety of nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号