首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recursive matrix relations concerning the kinematics and the dynamics of a constrained robotic system, schematized by several kinematical chains, are established in this paper. Introducing frames and bases, we first analyze the geometrical properties of the mechanism and derive a general set of relations. Kinematics of the vector system of velocities and accelerations for each element of robot are then obtained. Expressed for every independent loop of the robot, useful conditions of connectivity regarding the relative velocities and accelerations are determined for direct or inverse kinematics problem. Based on the general principle of virtual powers, final matrix relations written in a recursive compact form express just the explicit dynamics equations of a constrained robotic system. Establishing active forces or actuator torques in an inverse dynamic problem, these equations are useful in fact for real-time control of a robot.  相似文献   

2.
基于运动约束解过约束并联机构变形协调方程   总被引:2,自引:0,他引:2  
提出利用运动约束关系来间接求解过约束并联机构变形协调方程.首先介绍了该方法的原理,接着分别针对平面和空间过约束并联机构,详述该方法的解决步骤,结果验证了该方法的正确性,从中还可看出该方法在求解复杂过约束并联机构时非常简洁,最后介绍了采用该方法解决多度过约束问题.  相似文献   

3.
The study of free-floating manipulators is important for the success of robotics program in space and in the design of innovative robot systems which can operate over a large workspace. In order to study the fundamental theoretical and experimental issues encountered in space robotics, a closed-chain planar manipulator was built at Ohio University (OU) which floats on a flat table using air bearings. Due to the absence of external forces in the plane of the table and couples normal to this plane, the linear momentum in the plane and the angular momentum normal to this plane are conserved. It is well known that the linear momentum equations are holonomic while the angular momentum equation is nonholonomic. Due to this nonholonomic behavior, the path-planning schemes commonly used for fixed-base manipulators do not directly apply to free-floating manipulators. In this paper, we present an algorithm for motion planning of planar free-floating manipulators based on the inverse position kinematics of the mechanism. It is demonstrated that the inverse position kinematics algorithms, commonly used for fixed-base manipulators, can be successfully applied to free-floating manipulators using an iterative search procedure to satisfy the nonholonomic angular momentum constraints. This procedure results in paths identical to those predicted by inverse rate kinematics. The inverse position kinematics algorithm is then used to avoid singularities during motion to result in successful paths. The results of the simulation of this algorithm using parameter estimates of the OU free-floating robot are presented.  相似文献   

4.
Artificial potential fields, which are widely used in robotics for path planning and collision avoidance, are normally beset by difficulties arising from the existence of local minima. This article proposes a solution that involves an asymptotically stable point-mass system governed by differential equations. The system represents a planar point robot moving from its initial position to the desired goal whilst avoiding a static obstacle. Because the system is asymptotically stable, its Lyapunov function, which produces artificial potential fields around the goal and the obstacle, has no local minima other than the goal configuration in the pathwise-connected proper subset of free space which contains the goal configuration. As an application, we consider the point stabilization of a planar mobile car-like robot moving in the presence of a static obstacle.  相似文献   

5.
In this paper, a new planar one-legged robot model is firstly proposed, which, unlike previous one-legged robot with springy legs, consists of three revolute joints. Then a novel manner of one-legged locomotion (i.e., ballistic flip) is designed for this robot. A complete flipping gait cycle is composed of four phases: two stance phases and two flight phases. During flight phases, no active control is needed on the knee joint. Rotational motion and translational motion is decoupled from each other in flight phases. Landing of the robot is regarded as an inelastic impulsive impact. During stance phases, the robot model can be simplified as a two-degree-of-freedom rigid manipulator. Based on analysis of kinematics and dynamics of the flip robot, trajectory planning of cyclic flip gait is formulized as a problem of numerical optimization subject to nonlinear constraints such as positive reaction force of ground and finite torque of the joints. One potential application of the flipping robot is space exploration, which urgently requires the legged locomotive robots to be light-weighted and energy efficient.  相似文献   

6.
The state vector equations for space axisymmetric problems of transversely isotropic piezoelectric media are established from the basic equations. Using the Hankel transform, the state vector equations are reduced to a system of ordinary differential equations. An analytical solution of the problems in the Hankel transform space is presented in the form of the product of initial state vector and transfer matrix. The transfer matrices are given for the three distinct eigenvalues. Applications of the solutions are discussed. An analytical solution for the transversely isotropic semi-infinite piezoelectric media subjected to concerted point loads on the surface z=0 is presented in the Hankel transform space. Using transfer matrix and the continuity conditions at the layer interfaces, the general solution formulation of N-layered transversely isotropic piezoelectric media is given. A selected set of numerical solutions is presented for a layered semi-infinite piezoelectric solid.  相似文献   

7.
Three-dimensional elastostatic Green's functions in anisotropic trimaterials are derived, for the first time, by applying the generalized Stroh's formalism and Fourier transforms. The Green's functions are expressed as a series summation with the first term corresponding to the full-space solution and other terms to the image solutions due to the interfaces. The most remarkable feature of the present solution is that the image solutions can be expressed by a simple line integral over a finite interval [0,2π]. By partitioning the trimaterial Green's function into a full-space solution and a complementary part, the line integral involves only regular functions if the singularity is within one of the three materials, being treated analytically owning to the explicit expression of the full-space solution. When the singularity is on the interface, which occurs if the field and source points are both on the same interface, the involved singularity is handled with the interfacial Green's functions.A numerical example is presented for a trimaterial system made of two anisotropic half spaces bonded perfectly by an isotropic adhesive layer, showing clearly the effect of material layering on the Green's displacements and stresses. Furthermore, by comparing the present Green's solution to the direct (two-dimensional) 2D integral expression which is also derived in this paper, it is shown that, the computational time for the calculation of the Green's function can be substantially reduced using the present solution, instead of the direct 2D integral method.  相似文献   

8.
讨论了载体位置、姿态均不受控制的闭环双臂空间机器人系统的非完整运动规划问题. 以系统动量、动量矩守恒关系及几何约束条件为基础,建立了控制设计所需的系统状态方程; 并通过对状态方程应用双向Lyapunov方法,获得了机械臂关节角的控制输入方程,从而达到 对载体姿态及机械臂关节角的双重控制效果. 该方法的优点是减少了载体姿态控制燃料的消 耗,有效地延长了空间机器人系统的使用寿命. 通过一个平面自由漂浮闭环双臂空间机器人系统 的数值仿真,证明了方法的有效性.  相似文献   

9.
This paper concerns the swing-up control of an n-link revolute planar robot with any one of the joints being passive. The goal is to design and analyze a swing-up controller that can bring the robot into any arbitrarily small neighborhood of the upright equilibrium point, at which all the links are in the upright position. We present a unified solution based on the notion of virtual composite link (VCL), which is a virtual link made up of one or more active links. By using the angles of two series of VCLs separated by the passive joint and using the total mechanical energy of the robot, we design a swing-up controller and analyze the global motion of the robot under the controller. The main new results of this paper are: (1) we obtain a lower bound for each control gain related to the angle of each VCL such that the closed-loop system has only one undesired equilibrium point in addition to the upright equilibrium point, and we present an original proof of the conditions on the control gains for a class of n-link underactuation-degree-one planar robots with an active first joint; (2) we provide a bigger control gain region for achieving the control objective than those of previous results on three- and n-link robots with a passive first joint; (3) we validate the theoretical results via numerical simulations on a 4-link robot with the passive joint in each of the four positions. This paper gains an insight into the passivity-based control of underactuated multiple-DOF systems.  相似文献   

10.
The problem of modeling of dynamics of a three-wheeled mobile robot with front wheel driven and steered is analyzed in this paper. Kinematical structure and kinematics of the robot are described. A universal methodology of analytical modeling of robot??s dynamics is applied. This methodology takes into account wheel-ground contact conditions and wheels?? slip. Its essence is the use of a contact model of deformable tire with rigid ground and division of the robot??s dynamics model into parts connected with wheels, including tire model, and with the mobile platform. The tire model used in this paper results from empirical dependencies determined during investigations of car tires. Ground geometry and type are specified in the environment model. Tire-ground interface is characterized by coefficients of friction and rolling resistance. The robot model takes into account the presence of friction in kinematical pairs. The model of servomotors is included as well. The important part of this work is simulation research performed using Matlab/Simulink package. Simulation research includes solving of the forward and inverse dynamics problems as well as the tracking control task. During simulations, the robot was moving on concrete and on a piece of ice. The simulation research enabled verification of the elaborated solutions.  相似文献   

11.
12.
The conventional exact time-domain formulation of the one-dimensional electromagnetic direct scattering problem is re-derived and transformed into causal space, the axies of which are defined as x ± ct. In this causal space, the direct scattering solution reduces to an exceedingly simple expression. This causal space solution yields the scattered fields incidentally, without computations additional to the basic solution for the current densities. the inverse scattering problem is then solved in this causal space. This solution to the inverse problem also consists of an exceedingly simple expression. Numerico-experimental results for both the direct and inverse causal space solutions are presented, and preliminary results of an error analysis are discussed.  相似文献   

13.
The complete solution space of a piezoelectric material is the direct sum of several orthogonal eigenspaces, one for each distinct eigenvalue. Each one of the 14 different classes of piezoelectric materials has a distinct form of the general solution, expressed in terms of the eigenvectors of the zeroth and higher orders and a kernel matrix containing analytic functions. When these functions are chosen to be logarithmic, one obtains, in a unified way, Green’s function of the infinite space as a single 8 × 8 matrix function G for the various load cases of concentrated line forces, dislocations, and a line charge. This expression of Green’s function is valid for all classes of nondegenerate and degenerate materials. With an appropriate choice of the parameters, it reduces to the solution of a half space with concentrated (line) forces at a boundary point, and with dislocations in the displacements. As another application, eigenvalues and eigensolutions are obtained for the bimaterial interface crack problem.  相似文献   

14.
许若男  罗建军  王明明 《力学学报》2021,53(10):2841-2852
由于目标的翻滚运动, 空间双臂机器人对动态目标的抓捕相比于静态目标更具有挑战性. 对抓捕策略进行优化可以提高空间双臂机器人对翻滚目标的操作能力以保证任务的成功. 本文提出了一种基于能力评估的抓捕策略优选方法. 空间双臂机器人捕获目标时, 双臂末端执行器与目标同时接触形成闭链系统, 闭链约束的引入使操作能力的评估更加复杂. 在对双臂空间机器人协调操作翻滚目标的运动学与动力学分析基础上, 建立了考虑闭链约束的协调工作空间, 并分析了基于任务兼容度的消旋能力评估指标. 建立的协调工作空间同时包含位置和姿态信息, 可以用于灵巧度的计算. 接着, 基于协调工作空间的全局灵巧度指标确定机械臂末端执行器对目标的最优抓捕点, 以及考虑相机视角约束和末端执行器对目标速度跟踪约束下的力任务兼容度指标确定空间双臂机器人捕获翻滚目标时的最优抓捕构型. 利用能力评估确定抓捕策略可以充分利用双臂的协调性以增加对动态目标的操作能力, 通过仿真验证了所提抓捕策略的可行性和有效性.   相似文献   

15.
We investigate and explain several exceptional phenomena appearing in mechanism kinematics. The starting point for the kinematical analysis of a mechanism is the formation of the relevant constraint map defining the constraint equations for the coordinates of the particular system. The constraint equations define the configuration space of the mechanism, which reveals the essential kineamtic characteristics. But in some cases the properties of the map, and not the configuration space itself, are important. This is true for example for so called under- and overconstrained mechanisms for which the standard formulation of constraints gives usually not enough or too many constraints when considering the dimension of their configuration space. These concepts also naturally lead to the concept of kinematotropic mechanisms which posses motion modes of different dimension. In this context the concept of a kinematotropy as a motion between such modes is introduced in this paper. We present a general approach to the kinematic analysis of mechanisms using the theory of algebraic geometry and tools of computational algebraic geometry. The configuration space is considered as a real algebraic variety defined by the constraints. The phenomena and needed theory are explained and several illustrative examples are given. In particular the underconstrained phenomenon is explained by considering the real and complex dimension of the configuration space variety.  相似文献   

16.
空间机器人双臂捕获卫星力学分析及镇定控制   总被引:7,自引:0,他引:7  
程靖  陈力 《力学学报》2016,48(4):832-842
随着航天技术的发展,空间机器人要求具有对非合作卫星的在轨捕获能力. 双臂空间机器人与单臂空间机器人相比在这方面显然更具有优势. 然而由于太空环境的复杂性,使得空间机器人双臂捕获非合作卫星操作过程的动力学与控制问题表现出下述特点:非完整动力学约束,动量、动量矩与能量传递变化,捕获前后结构开、闭环变拓扑,与闭环接触几何、运动学约束多者共存. 因此空间机器人双臂捕获卫星技术相关动力学与控制问题变得极其复杂. 为此,讨论了双臂空间机器人捕获自旋卫星过程的动力学演化模拟,以及捕获操作后其不稳定闭链混合体系统的镇定控制问题. 首先,利用拉格朗日第二类方程建立了捕获操作前双臂空间机器人的开环系统动力学模型,利用牛顿-欧拉法建立了目标卫星的系统动力学模型;在此基础上基于动量守恒定律、力的传递规律,经过积分与简化处理分析、求解了双臂空间机器人捕获目标卫星后受到的碰撞冲击效应,给出了合适的捕获操作策略. 根据闭链系统的闭环约束几何及运动学关系获得了闭合链约束方程,推导了捕获操作后闭链混合体系统的动力学方程. 最后基于该动力学方程针对捕获操作结束后失稳的闭链混合体系统,设计了镇定运动模糊H 控制方案. 提出的方案利用模糊逻辑环节克服参数不确定影响,由H 鲁棒控制项消除逼近误差来保证系统控制精度;通过最小权值范数法分配各臂关节力矩,以保证两臂协同操作. 李雅普诺夫稳定性理论证明了系统的全局稳定性. 最后通过数值仿真实验模拟、分析了碰撞冲击响应,并验证了上述镇定运动控制方案的有效性.   相似文献   

17.
The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach space. Under suitable conditions, it was proved that the iterative sequence converges strongly to a common fixed point which was also the unique solution of some variational inequality in a reflexive Banach space. The results presented extend and improve some recent results.  相似文献   

18.
The method of regularized Stokeslets (MRS) uses a radially symmetric blob function of infinite support to smooth point forces and allows for evaluation of the resulting flow field. This is a common method to study swimmers at zero Reynolds number where the Stokeslet is the fundamental solution corresponding to the kernel of the single layer potential. Simulating the collective motion of N micro-swimmers using the MRS results in at least N2 pair-wise interactions. Efficient simulation of a large number of swimmers in free space is observed with the implementation of the kernel-independent fast multipole method (FMM) for radial basis functions. We illustrate the complexity of the algorithm on a simple test case where we study regularized point forces, showing that the method is of order N. Additionally, we explore accuracy in time for the MRS where the swimmers are modeled as Kirchhoff rods and the kernel-independent FMM is compared to the direct calculation using the standard MRS. Optimal hydrodynamic efficiency is also explored for different configurations of swimmers.  相似文献   

19.
This paper is concerned with some general theorems for the linear dynamic theory of magnetoelectroelasticity. First, the spatial behavior of solutions is studied. In this sense, the so called ??support?? of the given data in a fixed interval of time [0,T] is introduced and an adequate time-weighted surface power function associated with the solution at issue is considered. Using their properties, we get the domain of influence and an exponential decay estimate with time-independent rates inside the domain of influence. As a by-product, a uniqueness result is derived for both bounded and unbounded bodies. Then, the case of non-zero initial conditions is also considered. Under a boundedness restriction on the initial data, an energy estimate is obtained. Finally, a continuous dependence result of solutions upon initial data and body forces is established.  相似文献   

20.
The published traditional point force problem solutions usually orient axes of coordinates in such a way that plane xOy is parallel to the planes of isotropy. We consider here a general case: an arbitrary point force is applied inside a transversely isotropic space, with arbitrary axes orientation. We obtain the field of displacements and stresses in terms of contour integrals, which are computable, because the solution for the traditional case is known. Identification of the set of contour integrals, which look impossible to compute, is a necessary first step toward the solution of non-traditional contact and crack problems for arbitrarily oriented cracks and punches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号