首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1958, Jeffreys (Geophys J?R Astron Soc 1:92–95) proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys–Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0?≤?α?≤?1 to all negative values. This is consistent with the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive with a completely monotone derivative, with a related spectrum of retardation times. The complete range α?≤?1 yields a continuous transition from a Hooke elastic solid with no creep $\left(\alpha \,\to\, -\infty\right)$ to a Maxwell fluid with linear creep $\left(\alpha \,=\,1\right)$ passing through the Lomnitz viscoelastic body with logarithmic creep $\left(\alpha\, =0\right)$ , which separates solid-like from fluid-like behaviors. Furthermore, we numerically compute the relaxation modulus and provide the analytical expression of the spectrum of retardation times corresponding to the Jeffreys–Lomnitz creep law extended to all α?≤?1.  相似文献   

2.
Non-porous magnetic polymer microspheres with a core-shell structure were prepared by a novel micro-suspension polymerization technique. A stable iron oxide ferrofluid was used to supply the magnetic core, and the polymeric shell was made of glycidyl methacrylate (GMA monomer) and ethylene dimethacrylate (cross-linker). In the preparation, polyvinyl alcohol was used as the stabilizer, and a lauryl alcohol mixture as the dispersant. The influence of various conditions such as aqueous phase volume, GMA and initiator amounts, reaction time and stirring speed on the character of the microspheres was investigated. The magnetic microspheres were then characterized briefly. The results indicate that the microspheres with active epoxy groups had a narrow size distribution range from 1 to 10 μm with a volume-weighted mean diameter of 4.5 μm. The saturation magnetization reached 19.9 emu/g with little coercivity and remanence.  相似文献   

3.
Monosize, 1.6 μm, magnetic beads of poly(glycidyl methacrylate) [M-poly(GMA)], were prepared by dispersion polymerization in the presence of Fe3O4 nano-powder. Monosize M-poly(GMA) beads were characterized by swelling tests, density measurements, electron spin resonance (ESR), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM). The characteristic functional groups of M-poly(GMA) beads were analyzed by Fourier transform infrared spectrometer (FTIR). The M-poly(GMA) beads are highly uniform in size and have a spherical shape and non-porous structure. Polydispersity index (PDI) of M-poly(GMA) beads was calculated to be around 1.008. The hydrated density of the M-poly(GMA) beads measured at 25 ℃ was 1.14 g/cm^3. The content of oxirane groups on the surface of the M-poly(GMA) sample was found to be 3.46 mmol/g by using perchloric acid titration. The specific surface area of the M-poly(GMA) beads was determined to be 3.2 m^2/g. The equilibrium swelling ratio was 52%. The volume fraction of magnetite nanopowder in the M-poly(GMA) beads was found to be 4.5%. The g factor, that can be considered as a quantity characteristic of the molecules in which the unpaired electrons are located, was found to be 2.28 for M-poly(GMA). The external magnetic field at resonance was calculated to be 2055 Gs which was found sufficient to excite all of the dipole moments present in 1.0 g of M-poly(GMA) sample.  相似文献   

4.
This paper presents a comprehensive experimental and theoretical investigation of the deformation behavior of high-purity, polycrystalline α-titanium under quasi-static conditions at room temperature. The initial material in this study was a cross-rolled plate with a strong basal texture. To quantify the plastic anisotropy and the tension–compression asymmetry of this material, monotonic tensile and compressive tests were conducted, on samples cut along different directions of the plate. A new anisotropic elastic/plastic model was developed to describe the quasi-static macroscopic response of the aggregate. Key in its formulation is the use of an anisotropic yield criterion that captures strength-differential effects and an anisotropic hardening rule that accounts for texture evolution associated to twinning. A very good agreement between FE simulations using the model developed and uniaxial data was obtained.  相似文献   

5.
6.
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD) flows. The time derivative is expressed by means of Caputo’s fractional derivative concept, while the model is solved via the full-spectral method(FSM) and the semi-spectral scheme(SSS). The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques. The SSS is developed ...  相似文献   

7.
Nano-sized hexagonal magnesium hydroxide (Mg(OH)2) with good dispersibility was synthesized by a double injection-hydrothermal method, utilizing polyvinylpyrrolidone (PVP) as an additive and with optimized processing parameters. SEM and BET analysis showed that the mean particle size and specific surface area of the Mg(OH)2 particles were 174 nm and 50.77 m^2/g, respectively. The FT-IR spectra and the XRD patterns showed that PVP was adsorbed on the surface of the Mg(OH)2 crystal, thus effectively limiting particle agglomeration and hindering crystal growth along the (1 01 ) plane. TGA showed a decrease in the decomposition temperature and an increase in the weight loss of the Mg(OH)2 particles due to addition of PV/.  相似文献   

8.
Meloxicam-β-cyclodextrin (ME-β-CD) inclusion complex was prepared by a fluid-bed coating technique upon solvent removal and simultaneous depositing onto the surface of nonpareil pellets and using PVP K30 as a binding agent to facilitate good coating. The resultant pellets were spherical and intact in shape with good flowability and friability. SEM analysis showed that the pellets were smooth and had a tightly coated inclusion complex layer. In vitro dissolution of the inclusion complex pellets in pH 7.4 pho...  相似文献   

9.
We construct Darboux transformation of a coupled generalized nonlinear Schrödinger (CGNLS) equations and obtain exact analytic expressions of breather and rogue wave solutions. We also formulate the conditions for isolating these solutions. We show that the rogue wave solution can be found only when the four wave mixing parameter becomes real. We also investigate the modulation instability of the steady state solution of CGNLS system and demonstrate that it can occur only when the four wave mixing parameter becomes real. Our results give an evidence for the connection between the occurrence of rogue wave solution and the modulation instability.  相似文献   

10.
OBJECTIVES: This study aimed to characterize the prevalence of congenital heart disease (CHD) in children born alive in S?o Miguel island from January 1992 to December 2001. METHODS: Based on the Azorean Registry of CHD, which includes complete clinical and personal information, 189 patients were diagnosed. RESULTS: During this 10-year period, the average prevalence of CHD is 9.16 per 1,000 live births (range 4.77-12.75). The most frequent cardiac malformations found were: ventricular septal defect (38.1%), atrial septal defect (12.2%) and patent ductus arteriosus (11.6%). Until now, four familial clusters were identified, representing a total of 13 patients. CONCLUSIONS: This first epidemiological study of CHD in the Azorean population reveals evidence for familial aggregation, which is of great interest for understanding the genes involved in these complex pathologies.  相似文献   

11.
12.
A homogeneous precipitation process based on urea hydrolysis reaction was exploited to synthesize BaMgAl10O17:Eu2+ phosphor. The process parameters, such as the dosage of urea, the calcination tem- peratures and the concentration of Eu2+, were refined in light of the characterization of the products. The experimental results revealed that pure and well-crystallized BaMgAl10O17:Eu2+ phosphor could be obtained at 1250℃, a much lower temperature than that for traditional solid-state reaction. The as-prepared phosphor particles were small in grain size, regular in morphology, and uniform in size distribution. Because of the high homogeneity of the process, the as-prepared phosphor exhibited stronger emission intensity and higher thermal stability than the sample prepared by solid-state reaction at 1600℃.  相似文献   

13.
Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV-vis diffusion reflection (UV-vis) and Raman spectrometry. Based on these characterizations, the synthesis mechanism was explained in terms of combined heterogeneous nucleation and...  相似文献   

14.
In this work, one-dimensional core–shell nanorods (CSNRs; 185–250 nm wide and 1–1.5 μm long) consisting of triethoxyvinylsilane-modified wollastonite (CaSiO3) nanorods (MWNRs) as a core and polystyrene as a shell with uniform size were successfully synthesized using an advanced microemulsion technique. The effect of varying the surfactant cetyltrimethylammonium bromide (producing CSNRsCTAB) or sodium dodecyl sulphate (producing CSNRsSDS) upon the size and morphology of the CSNRs was investigated by field-emission scanning electron microscopy (FE-SEM). X-ray diffractometry and Fourier transform infrared spectrophotometer revealed the existence of a strong interaction between the MWNRs and polystyrene, which implies that the polymer chains were successfully grafted onto the surface of the MWNRs. The CSNRs were blended with polypropylene by melt processing, and the effect of the CSNRs upon the morphological properties of the polypropylene matrix was investigated by FE-SEM and atomic force microscopy. It was observed that the polystyrene chains that grafted onto the CaSiO3 nanorods interfered with the aggregation of CaSiO3 nanorods in the polypropylene matrix and thus improved the compatibility of the CaSiO3 nanorods with the polypropylene matrix. Furthermore, the compatibility of CaSiO3 nanorods with polypropylene of CSNRSDS/polypropylene was superior to that of CSNRCTAB/polypropylene.  相似文献   

15.
16.
17.
The synthesis of hard-core/soft-shell calcium carbonate (CaCO3)/poly(methyl methacrylate) (PMMA) hybrid structured nanoparticles (〈100nm) by an atomized microemulsion polymerization process is reported. The polymer chains were anchored onto the surface of nano-CaCO3 through use of a cou- pling agent, triethoxyvinyl silane (TEVS). Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n-pentanol were used as the initiator, surfactant and cosurfactant, respectively. The polymeriza- tion mechanism of the core-shell latex particles is discussed. The encapsulation of nano-CaCO3 by PMMA was confirmed using a transmission electron microscope (TEM). The grafting percentage of the core-shell particles was investigated by thermogravimetric analysis (TGA). The nano-CaCO3/PMMA core-shell par- ticles were characterized by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results revealed the existence of a strong interaction at the interface of the nano-CaCO3 particle and the PMMA, which implies that the polymer chains were successfully grafted onto the surface of the nano-CaCO3 particles through the link of the coupling agent, In addition, the TGA and DSC results indicated an enhancement of the thermal stability of the core-shell materials compared with that of the pure nano-PMMA, The nano-CaCO3/PMMA particles were blended into a polypropylene (PP) matrix by melt processing. It can also be observed using scanning electron microscopy (SEM) that the PMMA chains grafted onto the CaCO3 nanoparticles interfere with the aggregation of CaCO3 in the polymer matrix (PP matrix) and thus improve the compatibility of the CaCO3 nanoparticles with the PP matrix.  相似文献   

18.
In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating furnace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500°C were obtained. The effect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.  相似文献   

19.
Surface plasmon resonance (SPR) reflectance imaging technique is devised as a label-free visualization tools to characterize near-field (100 nm) fluidic transport properties. The key idea is that the SPR reflectance intensity varies with the near-field refractive index (RI) of the test fluid, which in turn depends on the micro/nano-fluidic scalar properties, such as concentrations, temperatures, and phases. The SPR sensor techniques have been widely used in many different areas, particularly in the biomedical and biophysical societies. While flow visualization techniques based on RI detection have been extensively well documented (Merzkirch 1987), the use of SPR imaging for fluidic applications has been introduced only recently since the author’s group presented a series of related studies in the past few years. The primary goal of this review article is two-fold: (1) Introduction of the working principles of the SPR imaging as a fluidic sensor, and (2) Presentation of example measurement applications for various fluidic scalar properties using the SPR imaging sensor technique. Section 1 summarizes the history and the basic principle of SPR by focusing on the Kretschmann’s theory and Sect. 2 describes the laboratory SPR imaging system specifically designed for fluidic applications. Section 3 presents the optical and material properties that affect the SPR measurement capabilities and sensitivity. Section 4 presents example applications of the implemented SPR for different near-field characterization problems, including (1) micromixing concentration field, (2) convective/diffusion of salinity distributions, (3) full-field thermometry, and (4) fingerprinting of crystallized nanofluidic self assembly. Sections 5 and 6 discuss the spatial measurement resolutions of the SPR imaging technique and the overall measurement sensitivities, respectively. Section 7 presents a few suggestions to further enhance the SPR measurement accuracy particularly for near-field fluidic characterization.  相似文献   

20.
In this paper,using the equilibrium equations and boundary conditionsof elastic stability problem of Новожилов and the method of mathematicaltheory of elasticity,we solve some elastic stability problems,which werestudied byищлинскииandвоицеховская,and obtained more reason-able results than theirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号