首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: By utilizing model systems, macroscopically observable phenomena like friction or dewetting allow to identify and to quantify molecular interfacial parameters like molecular interpenetration depth, interfacial tension, or slippage length between grafted and free chemically identical polymers. We present experimental results, which permit to extract these parameters from simple contact angle measurements or by following the dewetting process in real time with a simple optical microscope. We also show how these model experiments can provide valuable insight and fundamental understanding of processes like polymeric friction and adhesion.  相似文献   

2.
A variational model is developed to compute the coupled density and concentration fields that define the structure of planar interface between equilibrium phases of a compressible polymer solution. The solution of the model in conjunction with the modified Sanchez-Lacombe, with parametric data relevant to real polymer solutions, quantifies the role of compressibility on interfacial thermodynamics and interfacial tension. In particular, it is found that pressure pulses originating from density changes compensate chemical stresses. The interfacial tension, based on Bakker's equation, between equilibrium polymer solution phases and corresponding interfacial thickness exhibits pressure scaling behavior analogous to that predicted with temperature for incompressible polymer solutions.  相似文献   

3.
We demonstrate the influence of molecular weight and molecular weight asymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broad range of interfacial properties using a pendant/sessile drop apparatus. The results show that neglecting mutual solubility, assumed to be a reasonable approximation in many cases, very often does not sustain. Instead, a diffuse interface layer develops in time with a corresponding transient interfacial tension. Depending on the specific combination of polymers, the transient interfacial tension is found to increase or decrease with time. The results are interpreted in terms of a recently proposed model [Shi et al., Macromolecules 37, 1591 (2004)], giving relative characteristic diffusion time scales in terms of molecular weight, molecular weight distribution, and viscosities. However, the time scales obtained from this theoretical approach do not give a conclusive trend. Using oscillatory dilatational interfacial experiments the viscoelastic behavior of these diffusive interfaces is demonstrated. The time evolution of the interfacial tension and the dilatational elasticity show the same trend as predicted by the theory of diffuse interfaces, supporting the idea that the polymer combinations under consideration indeed form diffuse interfaces. The dilatational elasticity and the dilatational viscosity show a frequency dependency that is described qualitatively by a simple Fickian diffusion model and quantitatively by a Maxwell model. The characteristic diffusion times provided by the latter show that the systems with thick interfaces (tens of microseconds and more) can be considered as slower diffusive systems compared to the systems with thinner interfaces (a few micrometers in thickness and less) can be considered as fast diffusive systems.  相似文献   

4.
We calculate the interfacial tension and the wetting behavior in phase separated colloid-polymer mixtures both for ideal and excluded volume interacting polymers. Within the recently developed extension of the free volume theory to include polymer interactions the interfacial tension of the free interface is calculated by adding a van der Waals squared gradient term. The wetting behavior at a hard wall is calculated following a Cahn-Fisher-Nakanishi approach taking the one- and two-body colloid-wall interactions into account. Comparing results for interacting polymers with those for ideal polymers we find that for interacting polymers the interfacial tension does not increase as steeply as a function of the gas-liquid colloid density difference. Furthermore, the wetting transition shifts to higher polymer concentrations, even to above the triple line. The predictions for both the interfacial tension and the wetting are compared to recent experiments.  相似文献   

5.
Summary: The interaction of a large polymer droplet (formed by a poorly soluble polymer A) with a soluble polymer additive (polymer B) is investigated in the framework of a mean‐field approach. We found that polymer B may tend to adsorb on the surface of the droplet even when it is immiscible with polymer A in the droplet and is soluble in the solvent surrounding the droplet. We calculated the concentration profiles of both polymers A and B near the interface and established conditions for polymer B accumulation at the interface. The dependencies of the surface tension and the interfacial excess of polymer B on its bulk concentration are also calculated. We found that even a very small amount of homopolymer B additive may result in a significant reduction of the interfacial tension (by a factor of 2). The effect is stronger if the additive is more flexible than the insoluble polymer.

The region of parameters where B from dilute solution is adsorbed at the A/solvent interface (II).  相似文献   


6.
ASP复合驱油体系瞬时界面张力的研究   总被引:13,自引:2,他引:11  
以胜利油田孤岛试验区原油为油相,用正交试验筛选了碱/天然混合羧酸盐/聚合物驱油体系,讨论了各组分对ASP复合驱油体系油水瞬时界面张力的影响,并探讨了各组分间的相互作用机理及其在油水界面的吸附机理。  相似文献   

7.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed.  相似文献   

8.
A combined computational and experimental approach is used to determine the interfacial thermodynamic and structural properties of the liquid 1,1,1,2-tetrafluoroethane (HFA134a)-vapor and liquid HFA134a-water (HFA134a|W) interfaces at 298 K and saturation pressure. Molecular dynamics (MD) computer simulations reveal a stable interface between HFA134a and water. The "10-90" interfacial thickness is comparable with those typically reported for organic-water systems. The interfacial tension of the HFA134a|W interface obtained from the pressure tensor analysis of the MD trajectory is in good agreement with the experimental value determined using in situ high-pressure tensiometry. These results indicate that the potential models utilized are capable of describing the intermolecular interactions between these two fluids. The tension of the HFA134a|W interface is significantly lower than those typically observed for conventional oil-water interfaces and similar to that of the compressed CO(2)-water interface, observed at moderate CO(2) pressures. The MD and tensiometric results are also compared and contrasted with the HFA134a|W and chlorofluorocarbon-water tension values estimated from a parametric relationship. This represents the first report of the interfacial and microscopic properties of the (propellant) hydrofluoroalkanes (HFA)|W interface. The results presented here are of relevance in the design of surfactants capable of forming and stabilizing water-in-HFA microemulsions. Reverse aqueous microemulsions in HFA-based pressurized metered-dose inhalers are candidate formulations for the systemic delivery of biomolecules to and through the lungs.  相似文献   

9.
This paper examines the role of polymer interdiffusion or interpenetration along and across a boundary of two compatible but dissimilar polymers in controlling interfacial adhesion in the interface region (interphase). The effect of interphase adhesion on the mechanical properties as well as the deformation and fracture behavior of sandwich laminates of poly(methylmethacrylate) (PMMA) and poly(vinylidene) fluoride (PVF2) have been studied. The interphase has been characterized using microscopy (optical, transmission, and scanning electron), dynamic mechanical spectroscopy, and x-ray microanalysis. Conditions of multiple crazing/fracture in the brittle phase (PMMA) and shear yielding in the ductile phase (PVF2) are discussed. Scanning electron micrographs confirm these deformation modes in PMMA-PVF2 sandwich composite laminates.  相似文献   

10.
Particles that are partially wetted by oil and water are known to adsorb at oil/water interfaces. By the same mechanism, particles that are partially wetted by two immiscible polymers should adsorb at the interface between those two polymers. However, since chemical differences between immiscible polymers are relatively modest, particle adsorption at polymer/polymer interfaces may be expected to be relatively uncommon. We have conducted experiments with several particle types added to two pairs of model polymers, polyisoprene/polydimethylsiloxane and polyisoprene/polyisobutylene. Contrary to our expectation, in every case, particles readily adsorbed at the polymer/polymer interfaces. We evaluated the Girifalco–Good theory as a means to predict the interfacial activity of the particles. The solid surface energy required by the Girifalco–Good theory was assumed to be equal to the critical surface tension, which was then found by float/sink tests. Our results suggest that this approach is not able to predict the observed interfacial activity of particles at polymer/polymer interfaces.  相似文献   

11.
We have used a recently developed surface force balance to measure, with extreme sensitivity, both lateral and normal forces between interacting surfaces, for the case of simple liquids and particularly with surface-attached polymers. The presence of polymers on the surfaces reduces drastically the force required to maintain them in sliding motion, under a given normal load, relative to the bare surface case. We believe this is due to the long range steric repulsion which can sustain a large normal load while maintaining a very fluid interfacial layer. The effect is much more marked for end-tethered chains in a good solvent than for adsorbed chains in a θ-solvent. This is attributed to the different extents of interpenetration of the compressed polymer layers.  相似文献   

12.
We have used continuous space rod-bead model and an off-lattice Monte Carlo technique to investigate interfacial properties between two incompatible polymers of different stiffnesses. We have estimated the interfacial tension as well as interfacial width of all the systems studied. Further, by studying the interfacial tension and/or interfacial width in the weak segregation limit one can estimate the critical value of temperature at which two different kinds of polymers mix. In the present work, we have estimated the critical value of temperature at which the polymers mix by studying the interfacial width in the weak segregation limit for the different systems containing the flexible and semi-flexible polymers of different stiffnesses.  相似文献   

13.
We present and discuss series of experiments conducted on systems controlled at the molecular level in order to identify the molecular mechanisms of polymer adhesion. A special emphasis is paid to 1) adhesion enhancement through block copolymers at an interface between two incompatible polymers (amorphous or semi‐crystalline); 2) adhesion promotion between an elastomer and a solid, by soft end grafted connector polymer molecules able to interdigitate into the elastomer. We show that surface modifications based on surface anchored polymer chains are efficient for adhesion enhancement because they allow the interface to sustain mechanical stresses. The coupling between surface and bulk stresses is finally what governs the adhesion energy and we examine how one can understand and optimize this coupling.  相似文献   

14.
Polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) are two immiscible polymers which form two-phase blends with weak interfacial adhesion and high interfacial tension. This situation may be changed by the addition of poly(methyl methacrylate) (PMMA), which concentrates preferably in the PVDF-rich phase, but also at the PVDF/PC interface. The interfacial activity of PMMA was estimated by the measurement of the interfacial adhesion and interfacial tension in relation to the PMMA content in the PVDF/PC blends. The interfacial adhesion between PC and homogeneous PVDF/PMMA blends of various compositions was measured by the dual cantilever beam technique. The imbedded fiber retraction method was used for the measurement of the interfacial tension. A very beneficial effect was observed when PVDF was premixed with PMMA amounts increasing up to ca. 35 wt.-%. Beyond that content, the improvement tends to level off.  相似文献   

15.
Interfacial properties of colloid-polymer mixtures are examined within an effective one-component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective potentials, and a free energy functional is used that treats colloid excluded volume correlations within Rosenfeld's fundamental measure theory, and depletion-induced attraction within first-order perturbation theory. This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to surface properties near a hard wall, to the depletion interaction between two walls, and to the fluid-fluid interface of demixed colloid-polymer mixtures. The results of the present theory compare well with predictions of a fully two-component representation of mixtures of colloids and ideal polymers (the Asakura-Oosawa model) and allow a systematic investigation of the effects of polymer-polymer interactions on interfacial properties. In particular, the wall surface tension is found to be significantly larger for interacting than for ideal polymers, whereas the opposite trend is predicted for the fluid-fluid interfacial tension.  相似文献   

16.
The essentials of the QCHB (quasi-chemical hydrogen-bonding) equation-of-state model are presented along with some applications for calculations of phase equilibria and interfacial properties of fluids and their mixtures. This is a model applicable to non-polar systems as well as to highly non-ideal systems with strong specific interactions, to systems of small molecules as well as to macromolecules, including polydisperse polymers, glasses, and gels, to liquids as well as to vapours including supercritical systems, to homogeneous as well as to inhomogeneous systems. A quasi-thermodynamic approach of inhomogeneous systems is used for modeling the fluid–fluid interface. Consistent expressions for the interfacial tension and interfacial profiles for various properties are presented. A satisfactory agreement is obtained between experimental and calculated surface tensions. Extension of the approach to mixtures is examined along with the associated problems for the numerical calculations of the interfacial profiles. A new equation is derived for the chemical potentials in the interfacial region, which facilitates very much the calculation of the composition profiles across the interface. The relation of the model with the COSMO-RS approach is also discussed.  相似文献   

17.
The study of adhesion has a long and rich history, with theory, experiments, and applications bridging numerous disciplines, including physics, chemistry, engineering, and medicine. This diverse interest has led to the development of a large number of methods for both enhancing and inhibiting adhesion at specific interfaces of interest. We report herein "smart" adhesion at a polymer/metal (oxide) interface that responds reversibly to changes in temperature by increasing or decreasing in magnitude. The temperature dependence in this system arises from the rubber elasticity of the polymer, 1,4-polybutadiene, and mirrors the interfacial behavior of the same polymer against water. Such systems offer unique opportunities for designing responsive materials whose properties can be actively controlled.  相似文献   

18.
We consider a symmetric interface between two polymers A(N) and B(N) in a common monomeric solvent S using the mean-field Scheutjens-Fleer self-consistent field theory and focus on the curvature dependence of the interfacial tension. In multi-component systems there is not one unique scenario to curve such an interface. We elaborate on this by keeping either the chemical potential of the solvent or the bulk concentration of the solvent fixed, that is we focus on the semi-grand canonical ensemble case. Following Helfrich, we expand the surface tension as a Taylor series in the curvature parameters and find that there is a non-zero linear dependence of the interfacial tension on the mean curvature in both cases. This implies a finite Tolman length. In a thermodynamic analysis we prove that the non-zero Tolman length is related to the adsorption of solvent at the interface. Similar, but not the same, correlations between the solvent adsorption and the Tolman length are found in the two scenarios. This result indicates that one should be careful with symmetry arguments in a Helfrich analysis, in particular for systems that have a finite interfacial tension: one not only should consider the structural symmetry of the interface, but also consider the constraints that are enforced upon imposing the curvature. The volume fraction of solvent, the chain length N as well as the interaction parameter chi(AB) in the system can be used to take the system in the direction of the critical point. The usual critical behavior is found. Both the width of the interface and the Tolman length diverge, whereas the density difference between the two phases, adsorbed amount of solvent at the interface, interfacial tension, spontaneous curvature, mean bending modulus as well as the Gaussian bending modulus vanish upon approach of the critical point.  相似文献   

19.
Molecular simulations of the sliding processes of polymer-on-polymer systems were performed to investigate the surface and subsurface deformations and how these affect tribological characteristics of nanometer-scale polymer films. It is shown that a very severe deformation is localized to a band of material about 2.5 nm thick at the interface of the polymer surfaces. Outside of this band, the polymer films experience a uniform shear strain that reaches a finite steady-state value of close to 100%. Only after the polymer films have achieved this steady-state shear strain do the contacting surfaces of the films show significant relative slippage over each other. Because severe deformation is limited to a localized band much thinner than the polymeric films, the thickness of the deformation band is envisaged to be independent of the film thickness and hence frictional forces are expected to be independent of the thickness of the polymer films. A strong dependency of friction on interfacial adhesion, surface roughness, and the shear modulus of the sliding system was observed. Although the simulations showed that frictional forces increase linearly with contact pressure, adhesive forces contribute significantly to the overall friction and must therefore be accounted for in nanometer-scale friction. It is also shown that the coefficient of friction is lower for lower-density polymers as well as for polymers with higher molecular weights.  相似文献   

20.
Using a Monte‐Carlo simulation of a continuous space Rod Bead Model the interface properties of systems of flexible polymer chains with different sizes of monomers are investigated. An immiscible polymer blend in the strong segregation state is modeled by a double sandwich system of chains differing by an factor of two in the size of the beads and the interfacial tension is calculated by a virial theorem method. The simulation data are compared to self‐consistent mean field and experimental data. The results show that the simulation data agree very satisfactory with mean‐field results. The interfacial tension decreases for asymmetric systems in comparison to symmetric systems with comparable volume contents of monomers and interaction strengths due to a decrease of the effective interaction. The parameters of the investigated systems are close to the properties of PS, PMMA and PI melts. A comparison with experimental results yields a very good agreement with data for PS/PMMA and less satisfactory for PS/PI. Additionally to the interfacial tension we have studied the interfacial width, the deformation of polymer chains near the interface, distributions of chain ends, monomer densities and distributions of centers of mass of chains.

Snapshot of a typical configuration for chains with different monomer sizes and equal number of monomers per chain.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号