首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

2.
In this work, partial characterization of the primary structure of phycocyanin from the cyanobacterium Aphanizomenon flos‐aquae (AFA) was achieved by mass spectrometry de novo sequencing with the aid of chemical derivatization. Combining N‐terminal sulfonation of tryptic peptides by 4‐sulfophenyl isothiocyanate (SPITC) and MALDI‐TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC‐derivatized peptides underwent facile fragmentation, predominantly resulting in y‐series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20 or more amino acid residues. This strategy allowed us to carry out peptide fragment fingerprinting and de novo sequencing of several peptides belonging to both α‐ and β‐phycocyanin polypeptides, obtaining a sequence coverage of 67% and 75%, respectively. The presence of different isoforms of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI‐ and ESI‐MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon for a correct taxonomic identity of this species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We describe CHASE, a novel algorithm for automated de novo sequencing based on the mass spectrometric (MS) fragmentation analysis of tryptic peptides. This algorithm is used for protein identification from sequence similarity criteria and consists of four steps: (1) derivatization of tryptic peptides at the N-terminus with a negatively charged reagent; (2) post-source decay (PSD) fragmentation analysis of peptides; (3) interpretation of the mass peaks with the CHASE algorithm and reconstruction of the amino acid sequence; (4) transfer of these data to software for protein identifications based on sequence homology (Basic Local Alignment Search Tool, BLAST). This procedure deduced the correct amino acid sequence of tryptic peptide samples and also was able to deduce the correct sequence from difficult mass patterns and identify the amino acid sequence. This allows complete automation of the process starting from MS fragmentation of complex peptide mixtures at low concentration (e.g. from silver-stained gel bands) to identification of the protein. We also show that if PSD data are collected in a single spectrum (instead of the segmented mode offered by conventional matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instrumentation), the complete workflow from MS-PSD data acquisition to similarity-based identification can be completely automated. This strategy may be applied to proteomic studies for protein identification based on automated de novo sequencing instead of MS or tandem MS patterns. We describe the Charge Assisted Sequencing Engine (CHASE) algorithm, the working protocol, the performance of the algorithm on spectra from MALDI-TOFMS and the data comparison between a TOF and a TOF-TOF instrument.  相似文献   

4.
磺基异硫氰酸苯酯化学辅助方法对新蛋白质进行从头测序   总被引:1,自引:0,他引:1  
利用基质辅助激光解吸电离-串联飞行时间(MALDI-TOF-TOF)质谱结合磺基异硫氰酸苯酯化学辅助的方法对一种从拟青霉(Paecilomyces bainier)分离纯化到的新人参皂苷Rb1水解酶的部分肽段进行了从头测序. 共获得了这个新蛋白质8条肽段的序列, 一些磺化后信噪比非常低的肽段也获得了比较完整的序列. 同时通过从头测序分析确定了一对甲硫氨酸非氧化和氧化肽段的序列. 结果表明, 磺化后的肽段离子化效率大大增强, 在PSD(源后裂解)过程中只有肽键断裂产生的C端的碎片离子系列(y离子系列)出现在质谱图中, 图谱背景清晰, 信噪比高, 单纯的y离子系列使得图谱解析变得非常容易. 将这8条序列在NCBI(美国国立生物技术信息中心)数据库中进行BLAST(蛋白质序列比对工具)检索印证这种β-葡萄糖甘酶是一个新蛋白质, 发现的两条相对保守的序列为进一步研究奠定了基础.  相似文献   

5.
Post source decay (PSD) analysis of precursor ions generated from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is a powerful tool for amino acid sequencing and primary structure analysis of proteins. N-Terminal sulfonation has become an effective derivatization strategy in facilitating de novo peptide sequencing by the formation of predominate y-type ion series in MALDI PSD spectra. Recently, an effective and inexpensive N-terminal derivatization method has been reported using 4-sulfophenyl isothiocyanate (SPITC) as the derivatization reagent (J. Mass. Spectrom. 2003; 38: 373-377). In this paper, we report an improvement in the derivatization procedure with this reagent that involves replacing an organic co-reagent with other chemicals and eliminating the use of organic solvent. The method is demonstrated on a model peptide and on tryptic digests of two proteins. The results indicate that the improved sulfonation reaction can be implemented with high efficiency under aqueous conditions and that the sensitivity of mass detection can be increased considerably.  相似文献   

6.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

7.
For mass spectrometry-based diagnostics of microorganisms, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used to identify urinary tract pathogens. However, it requires a lengthy culture step for accurate pathogen identification, and is limited by a relatively small number of available species in peptide spectral libraries (≤3329). Here, we propose a method for pathogen identification that overcomes the above limitations, and utilizes the MALDI-TOF/TOF MS instrument. Tandem mass spectra of the analyzed peptides were obtained by chemically activated fragmentation, which allowed mass spectrometry analysis in negative and positive ion modes. Peptide sequences were elucidated de novo, and aligned with the non-redundant National Center for Biotechnology Information Reference Sequence Database (NCBInr). For data analysis, we developed a custom program package that predicted peptide sequences from the negative and positive MS/MS spectra. The main advantage of this method over a conventional MALDI-TOF MS peptide analysis is identification in less than 24 h without a cultivation step. Compared to the limited identification with peptide spectra libraries, the NCBI database derived from genome sequencing currently contains 20,917 bacterial species, and is constantly expanding. This paper presents an accurate method that is used to identify pathogens grown on agar plates, and those isolated directly from urine samples, with high accuracy.  相似文献   

8.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have increased its application in recent years. The most common method of "peptide mass fingerprint" analysis often does not provide robust identification. Additional sequence information, obtained by post-source decay or collision induced dissociation, provides additional constraints for database searches. However, de novo sequencing by mass spectrometry is not yet common practice, most likely because of the difficulties associated with the interpretation of high and low energy CID spectra. Success with this type of sequencing requires full sequence coverage and demands better quality spectra than those typically used for data base searching. In this report we show that full-length de novo sequencing is possible using MALDI TOF/TOF analysis. The interpretation of MS/MS data is facilitated by N-terminal sulfonation after protection of lysine side chains (Keough et al., Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 7131-7136). Reliable de novo sequence analysis has been obtained using sub-picomol quantities of peptides and peptide sequences of up to 16 amino acid residues in length have been determined. The simple, predictable fragmentation pattern allows routine de novo interpretation, either manually or using software. Characterization of the complete primary structure of a peptide is often hindered because of differences in fragmentation efficiencies and in specific fragmentation patterns for different peptides. These differences are controlled by various structural parameters including the nature of the residues present. The influence of the presence of internal Pro, acidic and basic residues on the TOF/TOF fragmentation pattern will be discussed, both for underivatized and guanidinated/sulfonated peptides.  相似文献   

10.
A novel method for peptide sequencing by matrix-assisted laser desorption/ionization mass spectrometry with a time-of-flight/time-of-flight analyzer (MALDI-TOF/TOF) is presented. A stable isotope label introduced in the peptide N-terminus by derivatization, using a 1:1 mixture of acetic anhydride and deuterated acetic anhydride, allows for easy and unambiguous identification of ions belonging either to the N- or the C-terminal ion series in the product ion spectrum, making sequence assignment significantly simplified. The good performance of this technique was shown by successful sequencing of the contents of several peptide maps. A similar approach was recently applied to nanoelectrospray ionization (nanoESI) and nano-liquid chromatography/tandem mass spectrometry (LC/MS/MS). The MALDI-TOF/TOF technique allows for fast, direct sequencing of modified peptides in proteomics samples, and is complementary to the nanoESI and nanoLC/MS/MS approaches.  相似文献   

11.
Various peptide modifications have been explored recently to facilitate the acquisition of sequence information. N-terminal sulfonation is an interesting modification because it allows unambiguous de novo sequencing of peptides, especially in conjunction with MALDI-PSD-TOF analysis; such modified peptide ions undergo fragmentation at energies lower than those required conventionally for unmodified peptide ions. In this study, we systematically investigated the fragmentation mechanisms of N-terminal sulfonated peptide ions prepared using two different N-terminal sulfonation reagents: 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC). Collision-induced dissociation (CID) of the SPC-modified peptide ions produced a set of y-series ions that were more evenly distributed relative to those observed for the SPITC-modified peptides; y(n-1) ion peaks were consistently and significantly larger than the signals of the other y-ions. We experimentally investigated the differences between the dissociation energies of the SPITC- and SPC-modified peptide ions by comparing the MS/MS spectra of the complexes formed between the crown ether 18-crown-6 (CE) and the modified peptides. Upon CID, the complexes formed between 18-crown-6 ether and the protonated amino groups of C-terminal lysine residues underwent either peptide backbone fragmentation or complex dissociation. Although the crown ether complexes of the unmodified ([M + CE + 2H]2+) and SPC-modified ([M* + CE + 2H]2+) peptides underwent predominantly noncovalent complex dissociation upon CID, the low-energy dissociations of the crown ether complexes of the SPITC-modified peptides ([M' + CE + 2H]2+) unexpectedly resulted in peptide backbone fragmentations, along with a degree of complex dissociation. We performed quantum mechanical calculations to address the energetics of fragmentations observed for the modified peptides.  相似文献   

12.
《Analytical letters》2012,45(12):2124-2137
Papain was purified from dried Carica papaya latex by fractioned salt precipitation in presence of sodium tetrathionate to preserve enzymatic activity. Purification was followed by different electrophoretic methods. Identification of the purified product was afforded by submitting the peptides obtained by tryptic digestion of papain to matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis. Comparison of the peptide masses analyzed by peptide mass fingerprinting (PMF) MALDI-TOF and those obtained by theoretical tryptic digestion, revealed the presence of some peptides belonging the other three endopeptidases contained in papaya latex (very similar to papain in molecular weight and pI) in the purified fraction of papain. The PMF by MALDI-TOF could be applied as a method to follow papain purification.  相似文献   

13.
An improved method of de novo peptide sequencing based on mass spectrometry using novel N-terminal derivatization reagents with high proton affinity has been developed. The introduction of a positively charged group into the N-terminal amino group of a peptide is known to enhance the relative intensity of b-ions in product ion spectra, allowing the easy interpretation of the spectra. However, the physicochemical properties of charge derivatization reagents required for efficient fragmentation remain unclear. In this study, we prepared several derivatization reagents with high proton affinity, which are thought to be appropriate for peptide fragmentation under low-energy collision-induced dissociation (CID) conditions, and examined their usefulness in de novo peptide sequencing. Comparison of the effects on fragmentation among three derivatization reagents having a guanidino or an amidino moiety, which differ in proton affinity, clearly indicated that there was an optimal proton affinity for efficient fragmentation of peptides. Among reagents tested in this study, derivatization with 4-amidinobenzoic acid brought about the most effective fragmentation. This derivatization approach will offer a novel de novo peptide sequencing method under low-energy CID conditions.  相似文献   

14.
Collision-induced dissociation of singly charged peptide ions produced by resonant excitation in a matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer yields relatively low complexity MS/MS spectra that exhibit highly preferential fragmentation, typically occurring adjacent to aspartyl, glutamyl, and prolyl residues. Although these spectra have proven to be of considerable utility for database-driven protein identification, they have generally been considered to contain insufficient information to be useful for extensive de novo sequencing. Here, we report a procedure for de novo sequencing of peptides that uses MS/MS data generated by an in-house assembled MALDI-quadrupole-ion trap mass spectrometer (Krutchinsky, Kalkum, and Chait Anal. Chem. 2001, 73, 5066-5077). Peptide sequences of up 14 amino acid residues in length have been deduced from digests of proteins separated by SDS-PAGE. Key to the success of the current procedure is an ability to obtain MS/MS spectra with high signal-to-noise ratios and to efficiently detect relatively low abundance fragment ions that result from the less favorable fragmentation pathways. The high signal-to-noise ratio yields sufficiently accurate mass differences to allow unambiguous amino acid sequence assignments (with a few exceptions), and the efficient detection of low abundance fragment ions allows continuous reads through moderately long stretches of sequence. Finally, we show how the aforementioned preferential cleavage property of singly charged ions can be used to facilitate the de novo sequencing process.  相似文献   

15.
Mass spectrometry using a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) instrument is a widespread technique for various types of proteomic analysis. Along with an expanding interest in proteomics, there is a strong requirement for the identification of proteins with high confidence from biological samples. Peptide modification by a wide variety of post-translational modifications (PTMs), the existence of different protein isoforms and the presence of uncharacterized genomes of many species, make protein identification through peptide mass fingerprinting (PMF) often unachievable. Peptide de novo sequencing has been proven to be a useful approach to overcome these variables, and efficient derivatization processes are important tools to achieve this goal. In the present work we describe the methodology and experimental applications of a fast, efficient and cheap lysine derivatization. This chemical modification improves the signals from lysine-terminated peptides and can be efficiently used as a lysine-blocking agent in combination with other derivatization techniques. Most importantly, upon peptide fragmentation it generates a neat series of predominantly y-ions, allowing the determination of unambiguous amino acid sequences. Moreover, this chemical compound was used with target-eluted samples, enabling a second, alternative analysis of the same sample in the MALDI mass spectrometer.  相似文献   

16.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap mass spectrometry have been used to study the fragmentation behavior of native peptides and peptide derivatives prepared for de novo sequencing applications. Sulfonic acid derivatized peptides were observed to fragment more extensively and up to 28 times more efficiently than the corresponding native peptides. Tandem mass spectra of native peptides containing aspartic or glutamic acids are dominated by cleavage on the C-terminal side of the acidic residues. This significantly limits the amount of sequence information that can be derived from those compounds. The MS/MS spectra of native tryptic peptides containing oxidized Met residues show extensive loss of CH(3)SOH and little sequence-specific fragmentation. On the other hand, the tandem mass spectra of derivatized peptides containing Asp, Glu and oxidized Met show much more uniform fragmentation along the peptide backbone. The AP-MALDI tandem mass spectra of some derivatized peptides were shown to be qualitatively very similar to the corresponding vacuum MALDI postsource decay mass spectra, which were obtained on a reflector time-of-flight instrument. However, the ion trap mass spectrometer offers several advantages for peptide sequencing relative to current reflector time-of-flight instruments including improved product ion mass measurement accuracy, improved precursor ion selection and MS(n). These latter capabilities were demonstrated with solution digests of model proteins and with in-gel digests of 2D-gel separated proteins.  相似文献   

17.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

18.
De novo sequencing of tryptic peptides by post source decay (PSD) or collision induced dissociation (CID) analysis using MALDI TOF-TOF instruments is due to the easy interpretation facilitated by the introduction of N-terminal sulfonated derivatives. Recently, a stable and cheap reagent, 4-sulfophenyl isothiocyanate (SPITC), has been successfully used for N-terminal derivatization. Previously described methods have always used desalting and concentration by reverse-phase chromatography prior to mass spectrometric analysis. Here we present an on-target sample preparation method based on AnchorChip target technology. The method was optimized for reduction of by-products and sensitivity with SPITC-derivatized tryptic BSA peptides, and successfully applied to protein identification from silver-stained two-dimensional electrophoretic gels of fish liver extracts. The method is simple and sensitive and allowed protein identification based on de novo sequencing and BLAST search from species with limited sequence information.  相似文献   

19.
A simple method of solid-phase derivatization and sequencing of tryptic peptides has been developed for rapid and unambiguous identification of spots on two-dimensional gels using post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The proteolytic digests of proteins are chemically modified by 4-sulfophenyl isothiocyanate. The derivatization reaction introduces a negative sulfonic acid group at the N-terminus of a peptide, which can increase the efficiency of PSD fragmentation and enable the selective detection of only a single series of fragment ions (y-ions). This chemically assisted method avoids the limitation of high background normally observed in MALDI-PSD spectra, and makes the spectra easier to interpret and facilitates de novo sequencing of internal fragment. The modification reaction is conducted in C(18) microZipTips to decrease the background and to enhance the signal/noise. Derivatization procedures were optimized for MALDI-PSD to increase the structural information and to obtain a complete peptide sequence even in critical cases. The MALDI-PSD mass spectra of two model peptides and their sulfonated derivatives are compared. For some proteins unambiguous identification could be achieved by MALDI-PSD sequencing of derivatized peptides obtained from in-gel digests of phosphorylase B and proteins of hepatic satellite cells (HSC).  相似文献   

20.
Vitellogenin (VTG) is a protein produced by the liver of oviparous animals in response to circulating estrogens. In the plasma of males and immature females, VTG is undetectable. VTG has been used as a biomarker for exposure to endocrine disruptors in many species. In the present study, characterization of intact Atlantic salmon VTG was effected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). Tryptic digest peptides were analyzed by MALDI ToF MS to obtain a peptide mass fingerprint. De novo sequencing of the tryptic peptides used low-energy collisionally-induced dissociation (CID) in an electrospray ionization quadrupole-ToF orthogonal hybrid mass spectrometer (ESI Q-ToF MS/MS). The interpretation of the product-ion spectra obtained from the ESI Q-ToF MS/MS was done by Lutefisk, a computer-based software algorithm. The molecular mass of the intact protein was found to be 187335 Da. A total of 14 tryptic peptides were sequenced and compared with the complete rainbow trout VTG and the partial Atlantic salmon VTG sequences found in the Swiss-Prot database. De novo sequencing by CID MS/MS of 11 Atlantic salmon tryptic digest peptides with selected precursor ions at m/z 788.24, 700.20, 794.75, 834.31, 889.28, 819.79, 865.27, 843.81, 572.20, 573.66 and 561.68 showed high homology with the known sequence of rainbow trout VTG. The last two precursor peptide ions, found at m/z 573.66 and m/z 561.68, also specifically matched the known portion of the Atlantic salmon VTG sequence. Finally, three tryptic precursor peptide ions found at m/z 795.18, 893.28 and 791.05, provided product-ion spectra, which were exclusive to the unsequenced portion of the Atlantic salmon VTG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号