首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review provides a broad overview of the literature related to the importance of pyridine and related ligands in homogeneous catalysis. In particular, it describes the various ways by which this ligand can stabilised the metal within a complex for homogeneous catalysis. We surveyed the important transition metal homogenous catalysts containing pyridine and related ligand acting as backbone for other ligands in homogeneous catalytic reactions explicitly from 2011 up to early 2014 and summarized their comparative catalytic activities.  相似文献   

2.
Keim  W. 《Russian Chemical Bulletin》2002,51(6):930-935
The role of ligands in homogeneous catalysis by transition metals and the promising lines of research related to simulation of biocatalytic processes are considered.  相似文献   

3.
Summary The platinum(II) carboxylates,trans-Pt(O2CR)2(py)2 and Pt(O2CR)2bpy (R=C6F5,p-HC6F4,m-HC6F4, oro-HC6F4; bpy=2,2-bipyridyl), have been prepared by reactions oftrans-Pt(OH)2(py)2 or Pt(OH)2bpy with the appropriate polyfluorobenzoic acids, whilst [Pt(py)4](O2CC6F5)2 has been obtained from reaction oftrans-PtCl2(py)2 with thallous pentafluorobenzoate in pyridine at room temperature. In boiling pyridine, the platinum(II) polyfluorobenzoates undergo either decarboxylation givingtrans-PtR2(py)2 and PtR2bpy (R= C6F5,p-HC6F4, orm-HC6F4) complexes or substitution, giving [Pt(py)4](O2CC6F4H-o)2 and [Ptbpy(py)2](O2CC6F4H-o)2. Reactions oftrans-PtX2(py)2 and PtX2bpy (X=Cl or Br) with appropriate thallous polyfluorobenzoates in boiling pyridine have yielded the complexestrans-PtR2(py)2, PtR2bpy, PtCl(R)bpy (R=C6F5,p-HC6F4, orm-HC6F4 in each case),trans-PtCl(R)(py)2 (R = C6F5 orm-HC6F4),trans-PtBr(C6F5)(py)2, and PtBr(C6F5)bpy. The complexestrans-PtR2(py)2 (R=C6F5 orp-HC6F4) have also been prepared from potassium tetrachloroplatinate(II) and the appropriate thallous polyfluorobenzoate in boiling py, andtrans-Pt(C6F5)2(py)2 has been similarly obtained fromcis-PtCl2(py)2 and C6F5CO2Tl. Significant decarboxylation was not observed on reaction oftrans-PtCl2(py)2 or PtCl2bpy with thallous 2,3,4,5-tetrafluorobenzoate.Part II, ref. 4;Preliminary communication, ref. 3;  相似文献   

4.
A modular approach to a new class of structurally diverse bidentate P/N, P/P, P/S, and P/Se chelate ligands has been developed. Starting from hydroquinone, various ligands were synthesized in a divergent manner via orthogonally bis-protected bromohydroquinones as the central building block. The first donor functionality (L1) is introduced to the aromatic (hydroquinone) ligand backbone either by Pd-catalyzed cross-coupling (Suzuki coupling) with hetero-aryl bromides, by Pd-catalyzed amination, or by lithiation and subsequent treatment with electrophiles (e.g., chlorophosphanes, disulfides, diselenides, or carbamoyl chlorides). After selective deprotection, the second ligand tooth (L2) is attached by reaction of the phenolic OH functionality with a chlorophosphane, a chlorophosphite, or a related reagent. Some of the resulting chelate ligands were converted into the respective PdX2 complexes (X = Cl, I), two of which were characterized by X-ray crystallography. The methodology developed opens an access to a broad variety of new chiral and achiral transition metal complexes and is generally suited for the solid-phase synthesis of combinatorial libraries, as will be reported separately.  相似文献   

5.
Traditional methods for selectivity control in homogeneous transition metal catalysis either employ steric effects in a binding pocket or chelate control. In a supramolecular strategy, encapsulation of the substrate can provide useful shape and size selectivity. A fully developed molecular recognition strategy involving hydrogen bonding or solvophobic forces has given almost completely regioselective functionalization of remote, unactivated C-H bonds.  相似文献   

6.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

7.
An alpha-diimine ligand (1) containing an axial donating pyridine group is developed for late metal polymerization catalysis. Despite having no substitution on the bottom face of the ligand, the nickel and palladium complexes of 1 are highly active for ethylene polymerization, producing linear high molecular weight polymers. For example, 1-NiBr2 (3) forms PE with a Mn of up to 109 224 g/mol with 1.4 branches/1000 C's. Similarly, 1-PdMeCl (5) forms PE with a Mn of up to 880 379 g/mol with 5.1 branches/1000 C's. In sharp contrast, catalysts containing the control ligand (2) consisting of a noncoordinating phenyl group gave only low molecular weight branched oligomers. It is observed that AlMe2Cl plays a specific role in generating the active species for the pyridine-based complexes. Presumably, the pyridine group may interact with AlMe2Cl to form a bimetallic species which suppresses the beta-hydride elimination process, hence resulting in reduced chain transfer and more linear structure.  相似文献   

8.
The solid complexes of MnII, FeIII, CoII, NiII and CuII with 3-(3-furan-2yl-acryloyl)-6-methyl-pyran-2,4-dione(L1) and 3-(3-thiophene-2yl-acryloyl)-6-methyl-pyran-2,4-dione (L2) have been synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic, i.r., P-n.m.r., u.v.–vis, X-ray diffraction and antimicrobial study. From the analytical and spectral data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). I.r. spectral data suggest that the ligand behaves as a dibasic bidentate ligand with O:O donor sequence towards metal ions. The physico-chemical data suggests distorted octahedral geometry for CuII complexes and octahedral geometry for all other complexes. The X-ray diffraction suggests an Orthorhombic crystal system for the CuII complex and Monoclinic crystal system for CoII and NiII complexes of ligand L1. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and the fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.  相似文献   

9.
This article provides an overview on recent progress in the polymerization of 1,3-dienes catalyzed by transition metal complexes with phosphorus and nitrogen ligands. Polymers having different microstructures (cis-1,4; 1,2; mixed cis-1,4/1,2) and tacticity (iso- or syndiotactic) were obtained from various 1,3-dienes (1,3-butadiene, isoprene, 1,3-pentadienes, 1,3-hexadienes) depending on the catalyst used, clearly suggesting that the catalyst structure (i.e. metal nature, type of ligand) strongly affects the polymerization chemo- and stereoselectivity. However, as indicated by the results obtained in the polymerization of substituted butadienes, a fundamental role in determining the selectivity is also played by the type of monomer: polymers with different structure, some of them completely new, were obtained from different monomers with the same catalyst. All these observations permitted to confirm, and in some cases to improve, the knowledge on the diene polymerization mechanism.  相似文献   

10.
A new concept for the construction of bidentate ligands for homogeneous metal complex catalysis is described. The concept relies on the self-assembly of monodentate ligands through hydrogen bonding. As a prototype of such systems, 6-diphenylphosphanyl-2-pyridone (6-DPPon) was shown to form a chelate in the coordination sphere of a transition metal center through unusual pyridone/hydroxypyridine hydrogen bonding (X-ray). This hydrogen bonding stays intact in a catalytic reaction as proven upon highly regioselective hydroformylation of terminal alkenes. Regioselectivities and reactivities observed rank the 6-DPPon/rhodium system among the most active and regioselective catalysts for n-selective hydroformylation of terminal alkenes.  相似文献   

11.
The process of catalyst discovery and development relying on combinatorial methods has suffered so far from the difficult access to structurally diverse and large libraries of ligands, in particular the structurally more complex class of bidentate ligands. A completely new approach to streamline the difficult ligand synthesis process is to use structurally less complex monodentate ligands that self-assemble in the coordination sphere of a metal center through noncovalent attractive ligand-ligand interactions to generate bidentate, chelating ligands. When complementary attractive ligand-ligand interactions are employed, it is even possible to generate libraries of defined chelate-ligand catalysts by simply mixing two different monomeric ligands. This Minireview summarizes the first approaches and results in this new field of combinatorial homogeneous catalysis.  相似文献   

12.
The first chiral ligand library based on self-assembly through complementary hydrogen-bonding was realized. From a 10 x 4 ligand library, catalysts that show excellent activity and enantioselectivity for the asymmetric rhodium-catalyzed hydrogenation have been identified.  相似文献   

13.
Among the most common ligands found on transition metal catalysts are halide ions. Of the commercially available catalysts or pre-catalysts, most are halo-metal complexes. In recent years, manipulation of this metal-halide functionality has revealed that this can be used as a highly valuable method of tuning the reactivity of the complex. Variation of the halide ligand will usually not alter the nature of the system to the extent that it becomes unreactive but will impart sufficiently large changes that differences in reactivity or selectivity occur. These differences are a product of the steric and electronic properties of the halide ligand which has the ability to donate electron density to the metal occurs in a predictable manner. Despite the common perception in asymmetric catalysis that halide ligands are of secondary importance compared to chiral ligands, halide ligands have been found to exert dramatic effects on the enantioselectivity of asymmetric transformations. While the mechanism of action is known for relatively few of the cases, many intriguing and potentially synthetically useful trends are apparent. This review discusses the physical properties of the halides and their effects on stoichiometric and catalytic transition metal processes. The metal-halide moiety thus emerges as a tunable functionality on the transition metal catalyst that can be used in the development of new catalytic systems.  相似文献   

14.
Recently, considerable attention has been given to the use of multi-dentate amido ligands in the coordination chemistry of a range of transition metals as a means of accessing novel structural motifs and unusual reactivity. Presented herein is a perspective on transition and f-block metal complexes containing diamido donor ligands of the general form [NDN](2-) (D = NR, O, PR). Particular focus is given to paramagnetic metals, which have in general been studied much less than their diamagnetic counterparts despite their potential to exhibit unique structures and diverse reactivity patterns, in addition to their magnetic properties.  相似文献   

15.
共价有机骨架材料(COF)也被称为“有机分子筛”,具有孔道结构开放有序、易于进行化学修饰改性、化学/热稳定性好等优点,是一种新型的有机聚合物多孔材料.近年来,以COF材料为催化剂载体负载金属化合物用于制备多相反应催化剂已经成为材料领域研究的热点,表现出高活性和高选择性.但是到目前为止,仍未找到简单有效地控制骨架中金属负载量和分散性的方法,这已成为该领域一个具有挑战性的课题.
  本文以2,2’-联吡啶-5,5’-二甲醛作为其中一个结构基元,成功把联吡啶配体引入到二维材料中.除此之外,由于COF是以亚胺键联接构筑形成的,因此框架中同时存在联吡啶和亚胺键两种含氮配体.我们通过红外光谱、结构模拟、元素分析、热失重分析、透射电镜(TEM)、X-射线光电子能谱、电感耦合等离子体色谱等手段详细表征了所制备的二维共价有机框架材料对醋酸钯(Pd(OAc)2)分子的络合负载行为.
  研究发现,联吡啶和亚胺键均可参与配位Pd(OAc)2,与亚胺键配位的Pd(OAc)2分布于框架的层与层之间,而与联吡啶配位的则部分占据了框架的孔道,导致孔径减小.另外,由于框架中的联吡啶配体含量可通过加入2,2’-联吡啶-5,5’-二甲醛含量的变化实现线性调控,因此也可调节与其配位的Pd(OAc)2含量,其负载量可控制在14.3–18.7 wt%,是目前已报道的二维COF中的最高值;另外, COF材料中调控金属负载量尚未见报道. TEM结果显示,负载在框架中的催化剂分子没有发生团聚,框架的孔道仍处于开放状态,因而反应底物可以自由地出入一维孔道并与络合的催化剂充分接触.另外,由于催化剂在框架内部可以达到分子级别的分散,而且其负载量和负载位置都易于控制,因而对有机反应表现出了优异的催化性能.
  我们尝试了以不同Pd负载量的COF为多相催化剂催化Heck反应.结果发现, Pd(II)@75%BPy COF(Pd负载量为最高值18.7 wt%)的催化活性最高,对不同底物均表现出优异的催化性能,产率达73–96%,反应速率遵循一级动力学曲线.且催化剂经多次循环利用仍能保持高活性,框架的有序结构也未被破坏,因此该材料有望用于各种类型优异的多相反应催化剂.  相似文献   

16.
Summary The synthesis and characterization of CrII, MnII, FeII, CoII, NiII, PdII, CuII, ZnII, CdII and UO 2 2+ complexes of 1-meotinoyl-4-phenyl-3-thiosemicarbazide (H2NTS) are reported. I.r. spectral data show that the ligand behaves in a bidentate and/or tetradentate manner. An octahedral structure is proposed for the CrII, FeII and NiII complexes; a tetrahedral structure for the MnII, CoII and Cu(NTS)·2H2O complexes; and a square planar structure for the PdII and Cu(HNTS)Cl·H2O complexes. The i.r. data suggest that the FeII complex contains a hydroxo bridge.  相似文献   

17.
The trimetallic clusters [Ru3(CO)10(dppm)], [Ru3(CO)12] and [RuCo2(CO)11] react with a number of multifunctional secondary phosphine and tertiary arsine ligands to give products consequent on carbonyl substitution and, in the case of the secondary phosphines, PH activation. The reaction with the unresolved mixed P/S donor, 1-phenylphosphino-2-thio(ethane), HSCH2CH2PHPh ( LH2), gave two products under various conditions which have been characterised by spectroscopic and crystallographic means. These two complexes [Ru3(μ-dppm)(H)(CO)7(LH)] and [Ru3(μ-dppm)(H)(CO)8(LH)Ru3(μ-dppm)(CO)9], show the versatility of the ligand, with it chelating in the former and bridging two Ru3 units in the latter. The stereogenic centres in the molecules gave rise to complicated spectroscopic data which are consistent with the presence of diastereoisomers. In the case of [Ru3(CO)12] the reaction with LH2 gave a poor yield of a tetranuclear butterfly cluster, [Ru4(CO)10(L)2], in which two of the ligands bridge opposite hinge wingtip bonds of the cluster. A related ligand, HSCH2CH2AsMe(C6H4CH2OMe), reacted with [RuCo2(CO)11] to give a low yield of the heterobimetallic Ru-Co adduct, [RuCo(CO)6(SCH2CH2AsMe(C6H4CH2OMe))], which appears to be the only one of its type so far structurally characterised.The secondary phosphine, HPMe(C6H4(CH2OMe)) and its oxide HP(O)Me(C6H4(CH2OMe)) also react with the cluster [Ru3(CO)10(dppm)] to give carbonyl substitution products, [Ru3(CO)5(dppm)(μ2-PMe(C6H4CH2OMe))4], and [Ru3H(CO)7(dppm)(μ21-P(O)Me(C6H4CH2OMe))]. The former consists of an open Ru3 triangle with four phosphide ligands bridging the metal-metal bonds; the latter has the O atom symmetrically bridging one Ru-Ru bond, the P atom being attached to a non-bridged Ru atom.  相似文献   

18.
Supramolecular chemistry has grown into a major scientific field over the last thirty years and has fueled numerous developments at the interfaces with biology and physics, clearly demonstrating its potential at a multidisciplinary level. Simultaneously, organometallic chemistry and transition metal catalysis have matured in an incredible manner, broadening the pallet of tools available for chemical conversions. The interface between supramolecular chemistry and transition metal catalysis has received surprisingly little attention. It provides, however, novel and elegant strategies that could lead to new tools in the search for effective catalysts, as well as the possibility of novel conversions induced by metal centres that are in unusual environments. This perspective describes new approaches to transition metal catalyst development that evolve from a combination of supramolecular strategies and rational ligand design, which may offer transition metal catalysts for future applications.  相似文献   

19.
Summary The catalytic activity of rhodium complexes for the hydrosilylation of substrates such as alkenes, 1,3-dienes, 1-alkynes, or ketones, is enhanced by the addition of organic oxidizing agents, such ast-butyl hydroperoxide, hydrogen peroxide, orm-chloroperbenzoic acid. Similar enhancement is found for the Group VIA hexacarbonyls in the hydrosilylation of 1,3-dienes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号