首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vlasov–Poisson equations describe the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via an electrostatic force. One of the main difficulties in numerically solving this system is the severe time-step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community for removing these time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the distribution function into a set of macro-particles, while the electric field is represented on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-Lagrangian approach, which begins with a grid-based Eulerian representation of both the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and finally projects this evolved field back onto the original Eulerian mesh. In particular, we develop in this work a method that discretizes the 1 + 1 Vlasov–Poisson system via a high-order discontinuous Galerkin (DG) method in phase space, and an operator split, semi-Lagrangian method in time. Second-order accuracy in time is relatively easy to achieve via Strang operator splitting. With additional work, using higher-order splitting and a higher-order method of characteristics, we also demonstrate how to push this scheme to fourth-order accuracy in time. We show how to resolve all of the Lagrangian dynamics in such a way that mass is exactly conserved, positivity is maintained, and high-order accuracy is achieved. The Poisson equation is solved to high-order via the smallest stencil local discontinuous Galerkin (LDG) approach. We test the proposed scheme on several standard test cases.  相似文献   

2.
The objective of this paper is to assess the accuracy and efficiency of the immersed boundary (IB) method to predict the wall pressure fluctuations in turbulent flows, where the flow dynamics in the near-wall region is fundamental to correctly predict the overall flow. The present approach achieves sufficient accuracy at the immersed boundary and overcomes deficiencies in previous IB methods by introducing additional constraints – a compatibility for the interpolated velocity boundary condition related to mass conservation and the formal decoupling of the pressure on this surfaces. The immersed boundary-approximated domain method (IB-ADM) developed in the present study satisfies these conditions with an inexpensive computational overhead. The IB-ADM correctly predicts the near-wall velocity, pressure and scalar fields in several example problems, including flows around a very thin solid object for which incorrect results were obtained with previous IB methods. In order to have sufficient near-wall mesh resolution for LES and DNS computations, the present approach uses local mesh refinement. The present method has been also successfully applied to computation of the wall-pressure space–time correlation in DNS of turbulent channel flow on grids not aligned with the boundaries. When applied to a turbulent flow around an airfoil, the computed flow statistics – the mean/RMS flow field and power spectra of the wall pressure – are in good agreement with experiment.  相似文献   

3.
4.
We develop an efficient local time-stepping algorithm for the method of lines approach to numerical solution of transient partial differential equations. The need for local time-stepping arises when adaptive mesh refinement results in a mesh containing cells of greatly different sizes. The global CFL number and, hence, the global time step, are defined by the smallest cell size. This can be inefficient as a few small cells may impose a restrictive time step on the whole mesh. A local time-stepping scheme allows us to use the local CFL number which reduces the total number of function evaluations. The algorithm is based on a second order Runge–Kutta time integration. Its important features are a small stencil and the second order accuracy in the L2 and L norms.  相似文献   

5.
In this paper, we investigate an original way to deal with the problems generated by the limitation process of high-order finite volume methods based on polynomial reconstructions. Multi-dimensional Optimal Order Detection (MOOD) breaks away from classical limitations employed in high-order methods. The proposed method consists of detecting problematic situations after each time update of the solution and of reducing the local polynomial degree before recomputing the solution. As multi-dimensional MUSCL methods, the concept is simple and independent of mesh structure. Moreover MOOD is able to take physical constraints such as density and pressure positivity into account through an “a posteriori” detection. Numerical results on classical and demanding test cases for advection and Euler system are presented on quadrangular meshes to support the promising potential of this approach.  相似文献   

6.
We present a new reconnection-based arbitrary-Lagrangian–Eulerian (ALE) method. The main elements in a standard ALE simulation are an explicit Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes without changing connectivity of the mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh. In our new method we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of the mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation. We demonstrate performance of our new method on series of numerical examples and show it superiority in comparison with standard ALE methods without reconnection.  相似文献   

7.
We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection–dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.  相似文献   

8.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   

9.
We apply superstatistical techniques to an experimental time series of measured transient currents through a thin aluminium–PMMA–aluminium film. We show that in good approximation the current can be approximated by local Gaussian processes with fluctuating variance. The marginal density exhibits ‘fat tails’ and is well modelled by a superstatistical model. Our techniques can be generally applied to other short time series as well.  相似文献   

10.
We present a method for generating 2-D unstructured triangular meshes that undergo large deformations and topological changes in an automatic way. We employ a method for detecting when topological changes are imminent via distance functions and shape skeletons. When a change occurs, we use a level set method to guide the change of topology of the domain mesh. This is followed by an optimization procedure, using a variational formulation of active contours, that seeks to improve boundary mesh conformity to the zero level contour of the level set function. Our method is advantageous for Arbitrary-Lagrangian–Eulerian (ALE) type methods and directly allows for using a variational formulation of the physics being modeled and simulated, including the ability to account for important geometric information in the model (such as for surface tension driven flow). Furthermore, the meshing procedure is not required at every time-step and the level set update is only needed during a topological change. Hence, our method does not significantly affect computational cost.  相似文献   

11.
This study developed spray-adaptive mesh refinement algorithms with directional sensitivity in an unstructured solver to improve spray simulation for internal combustion engine application. Inadequate spatial resolution is often found to cause inaccuracies in spray simulation using the Lagrangian–Eulerian approach due to the over-estimated diffusion and inappropriate liquid–gas phase coupling. Dynamic mesh refinement algorithms adaptive to fuel sprays and vapor gradients were developed in order to increase the grid resolution in the spray region to improve simulation accuracy. The local refinement introduced the coarse-fine face interface that requires advanced numerical schemes for flux calculation and grid rezoning with moving boundaries. To resolve the issue in flux calculation, this work implemented the refinement/coarsening algorithms into a collocated solver to avoid tedious interpolations in solving the momentum equations. A pressure correction method was applied to address unphysical pressure oscillations due to the collocation of pressure and velocity. An edge-based algorithm was used to evaluate the edge-centered quantities in order to account for the contributions from all the cells around an edge at the coarse-fine interface. A quasi-second-order upwind scheme with strong monotonicity was also modified to accommodate the coarse-fine interface for convective fluxes. To resolve the issue related to grid rezoning, rezoning was applied to the initial baseline mesh only and the new locations of the refined grids were obtained by interpolating the updated baseline mesh. The time step constraints were also re-evaluated to account for the change resulting from mesh refinement. The present refinement algorithm was used in simulating fuel sprays in an engine combustion chamber. It was found that the present approach could produce the same level of results as those using the uniformly fine mesh with substantially reduced computer time. Results also showed that this approach could alleviate the artifacts related to the Lagrangian discrete modeling of spray drops due to insufficient spatial resolution.  相似文献   

12.
In the Landau problem on the two-dimensional plane, physical displacement of a charged particle (i.e., magnetic translation) can be induced by an in-plane electric field. The geometric phase accompanying such magnetic translation around a closed path differs from the topological phase of Aharonov and Bohm in two essential aspects: The particle is in direct contact with the magnetic field and the geometric phase has an opposite sign from the Aharonov–Bohm phase. We show that magnetic translation on the two-dimensional cylinder implemented by the Schrödinger time evolution truly leads to the Aharonov–Bohm effect. The magnetic field normal to the cylinder’s surface corresponds to a line of magnetic monopoles of uniform density whose simulation is currently under investigation in cold atom physics. In order to characterize the quantum problem, one needs to specify the value of the magnetic flux (modulo the flux unit) that threads but not in touch with the cylinder. A general closed path on the cylinder may enclose both the Aharonov–Bohm flux and the local magnetic field that is in direct contact with the charged particle. This suggests an extension of the Aharonov–Bohm experiment that naturally takes into account both the geometric phase due to local interaction with the magnetic field and the topological phase of Aharonov and Bohm.  相似文献   

13.
We investigate using density functional theory (DFT) the electronic structure of (∼3%) Co-doped ZnO in the presence of native n-type donor defects such as VO and ZnI. In particular, we apply a pseudopotential-based self-interaction correction (pseudo-SIC) scheme as an improvement to the local spin-density approximation (LSDA). This overcomes major short comings of the LSDA in describing Co-doped ZnO. Donor+dopant pair complexes such as Co–VO and Co–ZnI are studied as relevant magnetic centres for long-range magnetic interactions at low-dopant concentrations. We find that complex formation is energetically favourable but the inter-complex magnetic coupling is too weak to account for room temperature ferromagnetism in ZnO:Co  相似文献   

14.
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction–diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinates, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction–diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.  相似文献   

15.
In the present work we developed a structured adaptive mesh refinement (S-AMR) strategy for fluid–structure interaction problems in laminar and turbulent incompressible flows. The computational grid consists of a number of nested grid blocks at different refinement levels. The coarsest grid blocks always cover the entire computational domain, and local refinement is achieved by the bisection of selected blocks in every coordinate direction. The grid topology and data-structure is managed using the Paramesh toolkit. The filtered Navier–Stokes equations for incompressible flow are advanced in time using an explicit second-order projection scheme, where all spatial derivatives are approximated using second-order central differences on a staggered grid. For transitional and turbulent flow regimes the large-eddy simulation (LES) approach is used, where special attention is paid on the discontinuities introduced by the local refinement. For all the fluid–structure interaction problems reported in this study the complete set of equations governing the dynamics of the flow and the structure are simultaneously advanced in time using a predictor–corrector strategy. An embedded-boundary method is utilized to enforce the boundary conditions on a complex moving body which is not aligned with the grid lines. Several examples of increasing complexity are given to demonstrate the robustness and accuracy of the proposed formulation.  相似文献   

16.
The stability and accuracy of three methods which enforce either a divergence-free velocity field, density invariance, or their combination are tested here through the standard Taylor–Green and spin-down vortex problems. While various approaches to incompressible SPH (ISPH) have been proposed in the past decade, the present paper is restricted to the projection method for the pressure and velocity coupling. It is shown that the divergence-free ISPH method cannot maintain stability in certain situations although it is accurate before instability sets in. The density-invariant ISPH method is stable but inaccurate with random-noise like disturbances. The combined ISPH, combining advantages in divergence-free ISPH and density-invariant ISPH, can maintain accuracy and stability although at a higher computational cost. Redistribution of particles on a fixed uniform mesh is also shown to be effective but the attraction of a mesh-free method is lost. A new divergence-free ISPH approach is proposed here which maintains accuracy and stability while remaining mesh free without increasing computational cost by slightly shifting particles away from streamlines, although the necessary interpolation of hydrodynamic characteristics means the formulation ceases to be strictly conservative. This avoids the highly anisotropic particle spacing which eventually triggers instability. Importantly pressure fields are free from spurious oscillations, up to the highest Reynolds numbers tested.  相似文献   

17.
In this paper moving mesh methods are used to simulate the blowup in a reaction–diffusion equation with traveling heat source. The finite-time blowup occurs if the speed of the movement of the heat source remains sufficiently low, and the blowup procedure is not fixed at one point not like that for stationary heat source. As time goes to the blowup time, the blowup profile converges to a stationary state. In the simulation a new moving mesh algorithm is designed to deal with the difficulty caused by the delta function in the traveling heat source. The convergence rates are verified and new blowup figures are generated from the numerical experiments.  相似文献   

18.
Two consistent projection methods of second-order temporal and spatial accuracy have been developed on a rectangular collocated mesh for variable density Navier–Stokes equations with a continuous surface force. Instead of the original projection methods (denoted as algorithms I and II in this paper), in which the updated cell center velocity from the intermediate velocity and the pressure gradient is not guaranteed solenoidal, the consistent projection methods (denoted as algorithms III and IV) obtain the cell center velocity based on an interpolation from a conservative fluxes with velocity unit on surrounding cell faces. Dependent on treatment of the continuous surface force, the pressure gradient in algorithm III or the sum of the pressure gradient and the surface force in algorithm IV at a cell center is then conducted from the difference between the updated velocity and the intermediate velocity in a consistent projection method. A non-viscous 3D static drop with serials of density ratios is numerically simulated. Using the consistent projection methods, the spurious currents can be greatly reduced and the pressure jump across the interface can be accurately captured without oscillations. The developed consistent projection method are also applied for simulation of interface evolution of an initial ellipse driven by the surface tension and of an initial sphere bubble driven by the buoyancy with good accuracy and good resolution.  相似文献   

19.
The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different.  相似文献   

20.
We describe an immersed boundary method for problems of fluid–solute-structure interaction. The numerical scheme employs linearly implicit timestepping, allowing for the stable use of timesteps that are substantially larger than those permitted by an explicit method, and local mesh refinement, making it feasible to resolve the steep gradients associated with the space charge layers as well as the chemical potential, which is used in our formulation to control the permeability of the membrane to the (possibly charged) solute. Low Reynolds number fluid dynamics are described by the time-dependent incompressible Stokes equations, which are solved by a cell-centered approximate projection method. The dynamics of the chemical species are governed by the advection–electrodiffusion equations, and our semi-implicit treatment of these equations results in a linear system which we solve by GMRES preconditioned via a fast adaptive composite-grid (FAC) solver. Numerical examples demonstrate the capabilities of this methodology, as well as its convergence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号