首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new numerical method, which is based on the coupling between variational multiscale method and meshfree methods, is developed for the water wave problems, in which the free surface capturing technique is used to capture the position of the free surface. The proposed method takes full advantage of meshfree methods, therefore, no mesh generation and mesh reconstruction are involved. Meanwhile, due to that the proposed method belongs to meshfree methods, thus it is suitable for the highly deformed free surface flow problems. Finally, two water wave problems are solved and the results have also been analyzed. The numerical results show that the proposed method can indeed obtain accurate numerical results for the water wave problems, which does not refer to the choice of a proper stabilization parameter.  相似文献   

2.
We consider variational multiscale (VMS) methods with h-adaptive technique for the stationary incompressible Navier–Stokes equations. The natural combination of VMS with adaptive strategy retains the best features of both methods and overcomes many of their deficits. A reliable a posteriori projection error estimator is derived, which can be computed by two local Gauss integrations at the element level. Finally, some numerical tests are presented to illustrate the method’s efficiency.  相似文献   

3.
The initial value problem of convex conservation laws, which includes the famous Burgers’ (inviscid) equation, plays an important rule not only in theoretical analysis for conservation laws, but also in numerical computations for various numerical methods. For example, the initial value problem of the Burgers’ equation is one of the most popular benchmarks in testing various numerical methods. But in all the numerical tests the initial data have to be assumed that they are either periodic or having a compact support, so that periodic boundary conditions at the periodic boundaries or two constant boundary conditions at two far apart spatial artificial boundaries can be used in practical computations. In this paper for the initial value problem with any initial data we propose exact boundary conditions at two spatial artificial boundaries, which contain a finite computational domain, by using the Lax’s exact formulas for the convex conservation laws. The well-posedness of the initial-boundary problem is discussed and the finite difference schemes applied to the artificial boundary problems are described. Numerical tests with the proposed artificial boundary conditions are carried out by using the Lax–Friedrichs monotone difference schemes.  相似文献   

4.
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic meshes are needed. Recently, the finite element heterogeneous multiscale method (FE-HMM) has been proposed for such problems, based on a macroscopic solver with effective data recovered from the solution of micro problems on sampling domains at quadrature points of a macroscopic mesh. Departing from the approach used in the FE-HMM, we show that interpolation techniques based on the reduced basis methodology (an offline-online strategy) allow one to design an efficient numerical method relying only on a small number of accurately computed micro solutions. This new method, called the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is significantly more efficient than the FE-HMM for high order macroscopic discretizations and for three-dimensional problems, when the repeated computation of micro problems over the whole computational domain is expensive. A priori error estimates of the RB-FE-HMM are derived. Numerical computations for two and three dimensional problems illustrate the applicability and efficiency of the numerical method.  相似文献   

5.
A new variational space-time mesh refinement method is proposed for the FDTD solution of Maxwell’s equations. The main advantage of this method is to guarantee the conservation of a discrete energy that implies that the scheme remains L2 stable under the usual CFL condition. The only additional cost induced by the mesh refinement is the inversion, at each time step, of a sparse symmetric positive definite linear system restricted to the unknowns located on the interface between coarse and fine grid. The method is presented in a rather general way and its stability is analyzed. An implementation is proposed for the Yee scheme. In this case, various numerical results in 3-D are presented in order to validate the approach and illustrate the practical interest of space-time mesh refinement methods.  相似文献   

6.
Several two-level iterative methods based on nonconforming finite element methods are applied for solving numerically the 2D/3D stationary incompressible MHD equations under different uniqueness conditions. These two-level algorithms are motivated by applying the m iterations on a coarse grid and correction once on a fine grid. A one-level Oseen iterative method on a fine mesh is further studied under a weak uniqueness condition. Moreover, the stability and error estimate are rigorously carried out, which prove that the proposed methods are stable and effective. Finally, some numerical examples corroborate the effectiveness of our theoretical analysis and the proposed methods.  相似文献   

7.
粘性不可压流的变分多尺度数值模拟   总被引:1,自引:1,他引:0  
在变分多尺度的理论框架内,将待求解的各个物理量分解到"粗"、"细"两种尺度上.在"细"尺度上采用"泡"函数作为近似函数,通过Petrov-Galerkin方法得到"细"尺度上的近似解;然后引入求解"粗"尺度方程所需的稳定项及与其相适应的稳定化因子;最后运用有限元方法求解"粗"、"细"两种尺度耦合的整体变分多尺度方程,得到有限元近似解.数值算例表明,该处理方法成功地消除了数值求解粘性不可压Navier-Stokes方程过程中,由对流占优和速度-压力失耦引起的数值伪振荡;所引入的稳定化因子适用于结构网格及非结构网格上的数值计算.  相似文献   

8.
In this article, a geometric technique to construct numerical schemes for partial differential equations (PDEs) that inherit Lie symmetries is proposed. The moving frame method enables one to adjust the numerical schemes in a geometric manner and systematically construct proper invariant versions of them. To illustrate the method, we study invariantization of the Crank-Nicolson scheme for Burgers’ equation. With careful choice of normalization equations, the invariantized schemes are shown to surpass the standard scheme, successfully removing numerical oscillation around sharp transition layers.  相似文献   

9.
基于小波分析理论和RKPM再生核函数研究无网格方法SPH中多尺度诊断工具,多尺度再生核函数使得数值计算在不同尺度上的响应分离,并通过动态伸缩窗函数给出计算域不同位置的时频特性,实现在无网格体系下构造网格计算方法的“自适应网格”,从而达到对不同流场位置多分辨率分析的目的.利用多尺度诊断工具中的小波分解算法给出SPH核函数在频域内能量残差估计,发展一种核函数光滑长度最优选取准则.最后,基于可压缩流场激波稀疏波共存的现象,针对传统的光滑长度自适应的缺陷,构造一种避免数值计算“拖尾”现象的自适应准则.  相似文献   

10.
The aim of this paper is to present an efficient numerical procedure for the theoretical study of bimolecular reactions. It is based on the R matrix variational formalism and the p-version of the finite element method (p-FEM) for expanding the wave function in a finite basis set, and facilitates the development of an efficient algorithm to invert matrices that significantly reduces the computational time in R matrix calculations. We also utilise the self-consistent finite element method to optimise the elements mesh and provide faster convergence of results. We apply our methodology to the study of the collinear H + H2 process and evaluate its efficiency by comparing our results with several results previously published in the literature.  相似文献   

11.
A multiscale generalised hp-finite element method (MSFEM) for time harmonic wave propagation in bands of locally periodic media of large, but finite extent, e.g., photonic crystal (PhC) bands, is presented. The method distinguishes itself by its size robustness, i.e., to achieve a prescribed error its computational effort does not depend on the number of periods. The proposed method shows this property for general incident fields, including plane waves incident at a certain angle to the infinite crystal surface, and at frequencies in and outside of the bandgap of the PhC. The proposed MSFEM is based on a precomputed problem adapted multiscale basis. This basis incorporates a set of complex Bloch modes, the eigenfunctions of the infinite PhC, which are modulated by macroscopic piecewise polynomials on a macroscopic FE mesh. The multiscale basis is shown to be efficient for finite PhC bands of any size, provided that boundary effects are resolved with a simple macroscopic boundary layer mesh. The MSFEM, constructed by combing the multiscale basis inside the crystal with some exterior discretisation, is a special case of the generalised finite element method (g-FEM). For the rapid evaluation of the matrix entries we introduce a size robust algorithm for integrals of quasi-periodic micro functions and polynomial macro functions. Size robustness of the present MSFEM in both, the number of basis functions and the computation time, is verified in extensive numerical experiments.  相似文献   

12.
The finite element method has been applied to the analysis of acoustic problems with several natural frequencies and mode shapes. First, a recovery-based error estimation is performed following the well-known procedures of structural problems. Then, an h -adaptive refinement strategy is proposed that leads to a finite element mesh with the minimum number of elements and with a specified error for each of the natural frequencies included in the analysis. The procedure provides a useful numerical tool, since the computational requirements are reduced. In addition, results obtained by means of the minimum element size procedure are shown for comparison purposes. The similarity of the meshes given by the two methods is justified on the basis of the equations that lead to the element size of the mesh. The procedure has been applied to some numerical examples to illustrate its validity.  相似文献   

13.
We present a coupling procedure for two different types of particle methods for the Boltzmann and the Navier–Stokes equations. A variant of the DSMC method is applied to simulate the Boltzmann equation, whereas a meshfree Lagrangian particle method, similar to the SPH method, is used for simulations of the Navier–Stokes equations. An automatic domain decomposition approach is used with the help of a continuum breakdown criterion. We apply adaptive spatial and time meshes. The classical Sod’s 1D shock tube problem is solved for a large range of Knudsen numbers. Results from Boltzmann, Navier–Stokes and hybrid solvers are compared. The CPU time for the hybrid solver is 3–4 times faster than for the Boltzmann solver.  相似文献   

14.
We analyze a multiscale operator decomposition finite element method for a conjugate heat transfer problem consisting of a fluid and a solid coupled through a common boundary. We derive accurate a posteriori error estimates that account for all sources of error, and in particular the transfer of error between fluid and solid domains. We use these estimates to guide adaptive mesh refinement. In addition, we provide compelling numerical evidence that the order of convergence of the operator decomposition method is limited by the accuracy of the transferred gradient information, and adapt a so-called boundary flux recovery method developed for elliptic problems in order to regain the optimal order of accuracy in an efficient manner. In an appendix, we provide an argument that explains the numerical results provided sufficient smoothness is assumed.  相似文献   

15.
王聚丰  孙凤欣  程荣军 《中国物理 B》2010,19(6):60201-060201
The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Galerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.  相似文献   

16.
In this paper, a framework of using h-adaptive finite element method for the Kohn–Sham equation on the tetrahedron mesh is presented. The Kohn–Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations.  相似文献   

17.
Proper orthogonal decomposition has been successfully used in the reduced-order modeling of complex systems. Its original promise of computationally efficient, yet accurate approximation of coherent structures in high Reynolds number turbulent flows, however, still remains to be fulfilled. To balance the low computational cost required by reduced-order modeling and the complexity of the targeted flows, appropriate closure modeling strategies need to be employed. Since modern closure models for turbulent flows are generally nonlinear, their efficient numerical discretization within a proper orthogonal decomposition framework is challenging. This paper proposes a two-level method for an efficient and accurate numerical discretization of general nonlinear closure models for proper orthogonal decomposition reduced-order models. The two-level method computes the nonlinear terms of the reduced-order model on a coarse mesh. Compared with a brute force computational approach in which the nonlinear terms are evaluated on the fine mesh at each time step, the two-level method attains the same level of accuracy while dramatically reducing the computational cost. We numerically illustrate these improvements in the two-level method by using it in three settings: the one-dimensional Burgers equation with a small diffusion parameter ν = 10?3, the two-dimensional flow past a cylinder at Reynolds number Re = 200, and the three-dimensional flow past a cylinder at Reynolds number Re = 1000.  相似文献   

18.
In the following paper, we discuss the exhaustive use and implementation of stabilization finite element methods for the resolution of the 3D time-dependent incompressible Navier–Stokes equations. The proposed method starts by the use of a finite element variational multiscale (VMS) method, which consists in here of a decomposition for both the velocity and the pressure fields into coarse/resolved scales and fine/unresolved scales. This choice of decomposition is shown to be favorable for simulating flows at high Reynolds number. We explore the behaviour and accuracy of the proposed approximation on three test cases. First, the lid-driven square cavity at Reynolds number up to 50,000 is compared with the highly resolved numerical simulations and second, the lid-driven cubic cavity up to Re = 12,000 is compared with the experimental data. Finally, we study the flow over a 2D backward-facing step at Re = 42,000. Results show that the present implementation is able to exhibit good stability and accuracy properties for high Reynolds number flows with unstructured meshes.  相似文献   

19.
The regularized long-wave equation has been solved numerically using the collocation method based on the Adams-Moulton method for the time integration and quintic B-spline functions for the space integration. The method is tested on the problems of propagation of a solitary wave and interaction of two solitary waves. The three conserved quantities of motion are calculated to determine the conservation properties of the proposed algorithm. The L ?? error norm is used to measure the difference between exact and numerical solutions. A comparison with the previously published numerical methods is performed.  相似文献   

20.
The non-equilibrium Richards equation is solved using a moving finite element method in this paper. The governing equation is discretized spatially with a standard finite element method, and temporally with second-order Runge–Kutta schemes. A strategy of the mesh movement is based on the work by Li et al. [R.Li, T.Tang, P.W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, Journal of Computational Physics, 177 (2002) 365–393]. A Beckett and Mackenzie type monitor function is adopted. To obtain high quality meshes around the wetting front, a smoothing method which is based on the diffusive mechanism is used. With the moving mesh technique, high mesh quality and high numerical accuracy are obtained successfully. The numerical convergence and the advantage of the algorithm are demonstrated by a series of numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号