首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a theoretical framework to clearly explain the inaccuracy of Godunov type schemes applied to the compressible Euler system at low Mach number on a Cartesian mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or 3D geometry and does not concern the 1D geometry. The theoretical arguments are based on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion of first-order modified equation. This theoretical approach allows to propose a simple modification that can be applied to any colocated scheme of Godunov type or not in order to define a large class of colocated schemes accurate at low Mach number on any mesh. It also allows to justify colocated schemes that are accurate at low Mach number as, for example, the Roe–Turkel and the AUSM+-up schemes, and to find a link with a colocated incompressible scheme stabilized with a Brezzi–Pitkäranta type stabilization. Numerical results justify the theoretical arguments proposed in this paper.  相似文献   

2.
We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general unstructured meshes in arbitrary dimension. The construction of the scheme is based upon the definition of some geometric vectors which are defined on a moving mesh. The finite volume solver is node based and compatible with the mesh displacement. We also discuss boundary conditions. Numerical results on basic 3D tests problems show the efficiency of this approach. We also consider a quasi-incompressible test problem for which our nodal solver gives very good results if compared with other Godunov solvers. We briefly discuss the compatibility with ALE and/or AMR techniques at the end of this work. We detail the coefficients of the isoparametric element in the appendix.  相似文献   

3.
基于欧拉框架下ADER格式,构造一维守恒只有一个时间步的、高精度中心型拉格朗日ADER(LADER)格式.构造r阶LADER格式包括:从欧拉方程出发推导拉格朗日框架下积分形式的方程、采用WENO方法高精度重构节点处守恒量和从1阶到r-1阶的空间导数、求拉氏框架下这些变量的Godunov值,并计算1阶到r-1阶的时间全导数,最后高精度离散积分形式的流通量函数.对光滑流场的模拟表明,LADER格式达到设计的精度;对含强间断的流场模拟表明,数值解在间断附近基本无振荡.  相似文献   

4.
This paper presents a new computational framework for the simulation of solid mechanics on general overlapping grids with adaptive mesh refinement (AMR). The approach, described here for time-dependent linear elasticity in two and three space dimensions, is motivated by considerations of accuracy, efficiency and flexibility. We consider two approaches for the numerical solution of the equations of linear elasticity on overlapping grids. In the first approach we solve the governing equations numerically as a second-order system (SOS) using a conservative finite-difference approximation. The second approach considers the equations written as a first-order system (FOS) and approximates them using a second-order characteristic-based (Godunov) finite-volume method. A principal aim of the paper is to present the first careful assessment of the accuracy and stability of these two representative schemes for the equations of linear elasticity on overlapping grids. This is done by first performing a stability analysis of analogous schemes for the first-order and second-order scalar wave equations on an overlapping grid. The analysis shows that non-dissipative approximations can have unstable modes with growth rates proportional to the inverse of the mesh spacing. This new result, which is relevant for the numerical solution of any type of wave propagation problem on overlapping grids, dictates the form of dissipation that is needed to stabilize the scheme. Numerical experiments show that the addition of the indicated form of dissipation and/or a separate filter step can be used to stabilize the SOS scheme. They also demonstrate that the upwinding inherent in the Godunov scheme, which provides dissipation of the appropriate form, stabilizes the FOS scheme. We then verify and compare the accuracy of the two schemes using the method of analytic solutions and using problems with known solutions. These latter problems provide useful benchmark solutions for time dependent elasticity. We also consider two problems in which exact solutions are not available, and use a posterior error estimates to assess the accuracy of the schemes. One of these two problems is additionally employed to demonstrate the use of dynamic AMR and its effectiveness for resolving elastic “shock” waves. Finally, results are presented that compare the computational performance of the two schemes. These demonstrate the speed and memory efficiency achieved by the use of structured overlapping grids and optimizations for Cartesian grids.  相似文献   

5.
We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection–dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.  相似文献   

6.
孙喜明  姚朝晖  杨京龙 《物理学报》2002,51(9):1942-1948
将BGK计算方法从二维拓展到三维并且应用于三维非结构网格,具有重要的理论价值和实用价值.采用旋转局部座标的方法,发展了一种针对三维非结构网格的BGK计算方法.在计算过程中,将最小二乘法应用于三维非结构网格的导数计算.对三维激波管和三维欠膨胀垂直冲击射流等两个算例进行了细致分析.这两个算例的计算结果表明,该方法在三维非结构网格上的初步应用是成功的 关键词: 气动BGK方法 三维 非结构网格  相似文献   

7.
We describe a mixed Eulerian–Lagrangian approach for solving fluid–structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite overlapping grids. Curvilinear grids are aligned with each interface and these grids deform as the interface evolves. The majority of grid points in the fluid domain generally belong to background Cartesian grids which do not move during a simulation. The FSI-DCG approach allows large displacements of the interfaces while retaining high quality grids. Efficiency is obtained through the use of structured grids and Cartesian grids. The governing equations in the fluid and solid domains are evolved in a partitioned approach. We solve the compressible Euler equations in the fluid domains using a high-order Godunov finite-volume scheme. We solve the linear elastodynamic equations in the solid domains using a second-order upwind scheme. We develop interface approximations based on the solution of a fluid–solid Riemann problem that results in a stable scheme even for the difficult case of light solids coupled to heavy fluids. The FSI-DCG approach is verified for three problems with known solutions, an elastic-piston problem, the superseismic shock problem and a deforming diffuser. In addition, a self convergence study is performed for an elastic shock hitting a fluid filled cavity. The overall FSI-DCG scheme is shown to be second-order accurate in the max-norm for smooth solutions, and robust and stable for problems with discontinuous solutions for a wide range of constitutive parameters.  相似文献   

8.
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier–Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.  相似文献   

9.
In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207–209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.  相似文献   

10.
汤波  李俊峰  王天舒 《物理学报》2008,57(11):6722-6729
提出了一种最小二乘粒子有限元方法,用其模拟了二维水珠滴落水面并飞溅散开的过程.该法基于拉格朗日描述,在每个时间步上使用扩展的Delaunay划分更新计算网格,并应用α形方法识别自由面形状;用最小二乘有限元方法离散流体运动的Navier-Stokes方程,并推导了一种自适应时间步长方案以提高计算效率和鲁棒性;引入网格拉伸技术修正减小流体质量误差.对水滴飞溅进行仿真,得到了与商用软件Flow-3d比较符合的结果,且具有更清晰锐利的自由面. 关键词: 滴落 网格划分 α形')" href="#">α形 最小二乘有限元  相似文献   

11.
An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics   总被引:1,自引:0,他引:1  
We introduce an unsplit staggered mesh scheme (USM) for multidimensional magnetohydrodynamics (MHD) that uses a constrained transport (CT) method with high-order Godunov fluxes and incorporates a new data reconstruction–evolution algorithm for second-order MHD interface states. In this new algorithm, the USM scheme includes so-called “multidimensional MHD terms”, proportional to ?·B, in a dimensionally-unsplit way in a single update. This data reconstruction–evolution step, extended from the corner transport upwind (CTU) approach of Colella, maintains in-plane dynamics very well, as shown by the advection of a very weak magnetic field loop in 2D. This data reconstruction–evolution algorithm is also of advantage in its consistency and simplicity when extended to 3D. The scheme maintains the ?·B=0 constraint by solving a set of discrete induction equations using the standard CT approach, where the accuracy of the computed electric field directly influences the quality of the magnetic field solution. We address the lack of proper dissipative behavior in the simple electric field averaging scheme and present a new modified electric field construction (MEC) that includes multidimensional derivative information and enhances solution accuracy. A series of comparison studies demonstrates the excellent performance of the full USM–MEC scheme for many stringent multidimensional MHD test problems chosen from the literature. The scheme is implemented and currently freely available in the University of Chicago ASC FLASH Center’s FLASH3 release.  相似文献   

12.
A Lagrangian finite-volume Godunov scheme is extended to simulate two-dimensional solids in planar geometry. The scheme employs an elastic–perfectly plastic material model, implemented using the method of radial return, and either the ‘stiffened’ gas or Osborne equation of state to describe the material. The problem of mesh entanglement, common to conventional two-dimensional Lagrangian schemes, is avoided by utilising the free-Lagrange Method. The Lagrangian formulation enables features convecting at the local velocity, such as material interfaces, to be resolved with minimal numerical dissipation. The governing equations are split into separate subproblems and solved sequentially in time using a time-operator split procedure. Local Riemann problems are solved using a two-shock approximate Riemann solver, and piecewise-linear data reconstruction is employed using a MUSCL-based approach to improve spatial accuracy. To illustrate the effectiveness of the technique, numerical simulations are presented and compared with results from commercial fixed-connectivity Lagrangian and smooth particle hydrodynamics solvers (AUTODYN-2D). The simulations comprise the low-velocity impact of an aluminium projectile on a semi-infinite target, the collapse of a thick-walled beryllium cylinder, and the high-velocity impact of cylindrical aluminium and steel projectiles on a thin aluminium target. The analytical solution for the collapse of a thick-walled cylinder is also presented for comparison.  相似文献   

13.
This paper presents a new atmospheric dynamical core which uses a high-order upwind finite-volume scheme of Godunov type for discretizing the non-hydrostatic equations of motion on the sphere under the shallow-atmosphere approximation. The model is formulated on the cubed-sphere in order to avoid polar singularities. An operator-split Runge–Kutta–Rosenbrock scheme is used to couple the horizontally explicit and vertically implicit discretizations so as to maintain accuracy in time and space and enforce a global CFL condition which is only restricted by the horizontal grid spacing and wave speed. The Rosenbrock approach is linearly implicit and so requires only one matrix solve per column per time step. Using a modified version of the low-speed AUSM+-up Riemann solver allows us to construct the vertical Jacobian matrix analytically, and so significantly improve the model efficiency. This model is tested against a series of typical atmospheric flow problems to verify accuracy and consistency. The test results reveal that this approach is stable, accurate and effective at maintaining sharp gradients in the flow.  相似文献   

14.
提出了数值求解三维变系数对流扩散方程非等距网格上的四阶精度19点紧致差分格式,为了提高求解效率,采用多重网格方法求解高精度格式所形成的大型代数方程组。数值实验结果表明本文方法对于不同的网格雷诺数问题,在精确性、稳定性和减少计算工作量方面均明显优于7点中心差分格式。  相似文献   

15.
A large time step (LTS) Godunov scheme firstly proposed by LeVeque is further developed in the present work and applied to Euler equations. Based on the analysis of the computational performances of LeVeque’s linear approximation on wave interactions, a multi-wave approximation on rarefaction fan is proposed to avoid the occurrences of rarefaction shocks in computations. The developed LTS scheme is validated using 1-D test cases, manifesting high resolution for discontinuities and the capability of maintaining computational stability when large CFL numbers are imposed. The scheme is then extended to multidimensional problems using dimensional splitting technique; the treatment of boundary condition for this multidimensional LTS scheme is also proposed. As for demonstration problems, inviscid flows over NACA0012 airfoil and ONERA M6 wing with given swept angle are simulated using the developed LTS scheme. The numerical results reveal the high resolution nature of the scheme, where the shock can be captured within 1–2 grid points. The resolution of the scheme would improve gradually along with the increasing of CFL number under an upper bound where the solution becomes severely oscillating across the shock. Computational efficiency comparisons show that the developed scheme is capable of reducing the computational time effectively with increasing the time step (CFL number).  相似文献   

16.
单个守恒型方程熵耗散格式中熵耗散函数的构造   总被引:4,自引:0,他引:4  
李红霞  茅德康 《计算物理》2004,21(3):319-326
对于一维单个守恒律方程,文[8]设计了一种非线性守恒型差分格式.此格式为二阶Godunov型的,用的是分片线性重构(reconstruction),重构函数的斜率是根据熵耗散得到的.格式满足熵条件.与传统的守恒格式不同的是此格式在计算过程中不仅用到了数值解还用到了数值熵.在此格式中一个所谓的熵耗散函数起到了很重要的作用,它在每一个网格的计算中耗散熵,以保证格式满足熵条件.文[8]中设计的熵耗散函数比较复杂,并且不是很完善.故数值地分析了在格式的构造中为何应给熵以一定的耗散,及应耗散多少.并且给出了一个新的以数值解的二阶差分作为基本模块的熵耗散函数.最后给出了相应的数值算例.  相似文献   

17.
Convergence of approximate solutions derived by the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices is established by using the compensated compactness method. A global existence theorem is shown; and a numerical method for the computation of the physical global solution of this model is provided by this approach.  相似文献   

18.
Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.  相似文献   

19.
张玉东  纪楚群 《计算物理》2006,23(2):165-170
发展建立了用于多体分离等包含动边界的非定常流场数值模拟方法,建立了笛卡尔坐标系下边界以任意速度运动的控制体上的流动控制方程,结合几何守恒律确定网格速度,发展了基于结构网格的动网格方法,网格移动量采用加权插值方法得到.通过数值模拟二维翼型及三维机翼的强迫振荡非定常流场,表明该方法可以数值模拟包含动边界的非定常流场.  相似文献   

20.
A new variational space-time mesh refinement method is proposed for the FDTD solution of Maxwell’s equations. The main advantage of this method is to guarantee the conservation of a discrete energy that implies that the scheme remains L2 stable under the usual CFL condition. The only additional cost induced by the mesh refinement is the inversion, at each time step, of a sparse symmetric positive definite linear system restricted to the unknowns located on the interface between coarse and fine grid. The method is presented in a rather general way and its stability is analyzed. An implementation is proposed for the Yee scheme. In this case, various numerical results in 3-D are presented in order to validate the approach and illustrate the practical interest of space-time mesh refinement methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号