首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel chromatographic medium for high-capacity protein adsorption was fabricated by grafting dextran (40 kDa) onto the pore surfaces of superporous agarose (SA) beads. The bead was denoted as D-SA. D-SA, SA and homogeneous agarose (HA) beads were modified with sulfopropyl (SP) group to prepare cation exchangers, and the adsorption and uptake of lysozyme on all three cation-exchange chromatographic beads (SP-HA, SP-SA and SP-D-SA) were investigated at salt concentrations of 6–50 mmol/L. Static adsorption experiments showed that the adsorption capacity of SP-D-SA (2.24 mmol/g) was 78% higher than that of SP-SA (1.26 mmol/g) and 54% higher than that of SP-HA (1.45 mmol/g) at a salt concentration of 6 mmol/L. Moreover, salt concentration had less influence on the adsorption capacity and dissociation constant of SP-D-SA than it did on SP-HA, suggesting that dextran-grafted superporous bead is a more potent architecture for chromatographic beads. In the dynamic uptake of lysozyme to the three cation-exchange beads, the De/D0 (the ratio of effective pore diffusivity to free solution diffusivity) values of 1.6–2.0 were obtained in SA-D-SA, indicating that effective pore diffusivities of SP-D-SA were about two times higher than free solution diffusivity for lysozyme. At 6 mmol/L NaCl, the De value in SA-D-SA (22.0 × 10−11 m2/s) was 14.4-fold greater than that in SP-HA. Due to the superior uptake kinetics in SA-D-SA, the highest dynamic binding capacity (DBC) and adsorption efficiency (the ratio of DBC to static adsorption capacity) was likewise found in SP-D-SA. It is thus confirmed that SP-D-SA has combined the advantages of superporous matrix structure and drafted ligand chemistry in mass transport and offers a new opportunity for the development of high-performance protein chromatography.  相似文献   

2.
Continuous agarose beds (monoliths) were prepared by casting agarose emulsions designed to generate superporous agarose. The gel structures obtained were transected by superpores (diameters could be varied in the range 20-200 microns) through which liquids could be pumped. The pore structure and the basic properties of the continuous gel were investigated by microscopy and size exclusion chromatography. The chromatographic behaviour was approximately the same as for beds packed with homogeneous agarose beads with a particle diameter equivalent to the distance between the superpores. In one application, the superporous continuous agarose bed was derivatized with a NAD+ analogue and used in the affinity purification of bovine lactate dehydrogenase from a crude extract. In another application, a new superporous composite gel material was prepared by adding hydroxyapatite particles to the agarose phase. The composite bed was used to separate a protein mixture by hydroxyapatite chromatography. In a third application, the continuous superporous agarose material was used as an electrophoresis gel. Here, a water-immiscible organic liquid was pumped through the superpores to dissipate the joule heat evolved, thus allowing high current densities.  相似文献   

3.
Superporous agarose beads have wide, connecting flow pores allowing large molecules such as plasmids to be transported into the interior of the beads by convective flow. The pore walls provide additional surface for plasmid binding thus increasing the binding capacity of the adsorbent. Novel superporous agarose anion exchangers have been prepared, differing with respect to bead diameter, superpore diameter and type of anion-exchange functional group (poly(ethyleneimine) and quaternary amine). The plasmid binding capacities were obtained from breakthrough curves and compared with the binding capacity of homogeneous agarose beads of the same particle size. Significantly, the smaller diameter superporous agarose beads were found to have four to five times higher plasmid binding capacity than the corresponding homogeneous agarose beads. The experimentally determined plasmid binding capacity was compared with the theoretically calculated surface area for each adsorbent and fair agreement was found. Confocal microscopy studies of beads with adsorbed, fluorescently labelled plasmids aided in the interpretation of the results. Superporous poly(ethyleneimine)-substituted beads with a high ion capacity (230 micromol/ml) showed a plasmid binding of 3-4 mg/ml adsorbent. Superporous quaternary amine-substituted beads had a lower ion capacity (81 micromol/ml) and showed a correspondingly lower plasmid binding capacity (1-2 mg/ml adsorbent). In spite of the lower capacity, the beads with quaternary amine ligand were preferred, due to their much better plasmid recovery (70-100% recovery). Interestingly, both capacity and recovery was improved when the plasmid adsorption step was carried out in the presence of a moderate salt concentration. The most suitable superporous bead type (45-75 microm diameter beads; 4 microm superpores; quaternary amine ligand) was chosen for the capture of plasmid DNA from a clarified alkaline lysate. Two strategies were evaluated, one with and one without enzymatic digestion of RNA. The strategy without RNase gave high plasmid recovery, quantitative removal of protein and a 70% reduction in RNA.  相似文献   

4.
We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol–gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100–200 °C and subsequent heat treatment at 400 °C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO2 rod columns with bimodal macro–mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.  相似文献   

5.
Mechanical blends formed of 50 wt% of high-density polyethylene (HDPE) and 50 wt% of ethylene–propylene–diene-monomer (EPDM) elastomer have been loaded with 50 wt% of three different particle size of CaCO3, namely CaCO3 300, CaCO3 700, and CaCO3 2000 whereby the latter has the smallest particle size of ~311, 82 μm. Mechanical, physico-chemical and thermal properties were followed up as a function of irradiation dose for loaded and unloaded blends. The results obtained indicated that the values of tensile strength, tensile modulus at 50% elongation, gel fraction and decomposition temperature increase with increasing irradiation dose. On the other hand elongation at break, permanent set and swelling number were found to decrease with increasing irradiation dose. Moreover, the effect of particle size of CaCO3 was observed in a limited but apparent upgrading of mechanical, physico-chemical, and thermal properties. The order of semi-reinforcing capacity of three different types of CaCO3 is as follow: CaCO3 2000 > CaCO3 700 > CaCO3 300 > unloaded blend. Whereby CaCO3 2000 has the smallest particle size.  相似文献   

6.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

7.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

8.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

9.
Superporous agarose beads were used as a support for hydrophobic interaction chromatography. These beads have large connecting flow pores in addition to their normal diffusion pores. The flow pores, which are approximately one fifth of the overall diameter of the superporous agarose beads, were earlier shown to give the beads improved mass transfer properties relative to homogeneous agarose beads (Gustavsson and Larsson, J. Chromatogr. A, 734 (1996) 231–240). Superporous agarose beads and homogeneous agarose beads of the same particle size range (106–180 μm) were derivatized with phenyl groups. The properties of the superporous beads were then compared with the homogeneous beads in the separation of a mixture of three model proteins (ribonuclease A, lysozyme and bovine serum albumin) at various superficial flow velocities from 30 to 600 cm/h. The superporous beads gave satisfactory separation at flow velocities five times higher than was possible for homogeneous beads. The performance of the two types of beads was also compared in the purification of lactate dehydrogenase from a beef heart extract at a superficial flow velocity of 150 cm/h. The superporous beads performed considerably better, leading to twice the purification factor and twice the concentration of the desired product. The results were interpreted using the theoretical treatment given by Carta and Rodrigues (Carta and Rodrigues, Chem. Eng. Sci., 48 (1993) 3927).  相似文献   

10.
This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1 h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01–0.07 ng mL−1 and 0.07–0.34 ng g−1, respectively, while the limit quantification was 0.10–0.20 ng mL−1 in gel samples and 0.40–0.97 ng g−1 in fish sample. The reproducibility of the method was good (5–15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8–0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish.  相似文献   

11.
A magnetic solid phase extraction method based on agarose coated magnetic nanoparticles)ACMNPs(coupled to a new magnetic field agitation (MFA) device was developed and investigated for the separation, preconcentration and determination of Pd(II) in aqueous solutions. For the first time, the formation of the nanoparticles and their encapsulation in agarose micro-flakes was conducted in a single step. For this purpose, preparation of the magnetic iron oxide nanoparticles was performed in an alkaline agarose solution. The sizes of Fe3O4 nanoparticles and agarose micro-flakes were 10–14 nm and 90–130 μm, respectively. The nanomagnetic agarose particles were functionalized by iminodiacetic acid and subjected to magnetic field agitation in the MFA device. The influence of different analytical parameters such as pH, ionic strength, type and volume of desorption solvent and amount of the adsorbent on the preconcentration of Pd(II) were investigated. Eight replicated analysis at the optimized conditions, resulted in a recovery of 94.1% with an RSD of 5.2% for Pd(II). The detection limit of the method (3σ) was 47 ng L−1 for the analyte. The method was successfully applied to the determination of Pd(II) in natural water samples.  相似文献   

12.
Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO2 films was described. TiO2 was prepared by sol–gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5 × 10−4 M ethanol solution of cyanidin to absorb the pigment. The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5 V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10–50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r = 0.92). The response time to increasing concentrations of the ammonia is about 180–220 s, and the corresponding values for decreasing concentrations 240–270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO2 film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO2 have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50 °C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH3 sensor for room temperature applications.  相似文献   

13.
A new electrochemical immunosensor for sensitive determination of thyroid-stimulating hormone (TSH) was designed by using redox-active nanogold-functionalized magnetic beads (GoldMag) as signal tags on the nanogold–graphene interface. To construct such GoldMag nanostructures, polyethyleneimine-functionalized magnetic beads (PEI-MBs) were initially prepared by using a wet chemical method, and the electroactive thionine molecules and gold nanoparticles were then alternately immobilized on the surface of PEI-MBs by using an opposite-charged adsorption technique and an in situ synthesis method, respectively. The synthesized GoldMag nanostructures were utilized as signal tags for the label of horseradish peroxidase-anti-TSH conjugates (HRP-anti-TSH). With a sandwich-type immunoassay format, the conjugated signal tags on the transducer were increased with the increasing TSH concentration in the sample, thus enhancing the signal of the electrochemical immunosensor due to the labeled HRP toward the catalytic reduction of H2O2. Under optimal conditions, the current was proportional to the logarithm of TSH concentration ranging from 0.01 to 20 μIU mL−1 in pH 6.0 HAc–NaAc containing 6 mM H2O2. The detection limit (LOD) was 0.005 μIU mL−1 TSH at 3sB. The immunosensor displayed an acceptable reproducibility, stability and selectivity. In addition, the methodology was evaluated with human serum specimens, receiving good correlation with results from commercially available electrochemiluminescent analyzer.  相似文献   

14.
The hydrate inhibition effect of three kinetic inhibitors (inhibex 301, 501, and 713) was assessed from (CH4 + C2H6 + C3H8) gas mixture + brine systems using a high pressure sapphire cell. The onset time of hydrate formation was determined by visual observation method and pressure drop profile method, respectively. The experimental results demonstrated that the onset time was able to be determined by the visual observation method all the time while the pressure drop profile method failed to detect the onset time clearly and correctly at lower temperatures. In some cases, the initial appearance of hydrate crystals cannot induce a clear break in the pressure–time relationship curve. The onset time measured by the visual observation method is usually shorter than or at least the same as that determined by the pressure drop profile method. The inhibiting effect on the growth of hydrate crystals can be shown by the difference of the onset time obtained by the two methods. The maximum tolerated subcooling of each inhibitor was also investigated based on the onset time. It was found that inhibex 301 behaves as the best inhibitor that can tolerate the maximum subcooling of 8.3 K at 0.5 wt% and 10.6 K at 1.0 wt%, respectively. The maximum subcooling for inhibex 501 is 6.8 K at 0.5 wt% and 6.6 K at 1.0 wt%, respectively. Inhibex 713 has relatively poor inhibiting effect among the three inhibitors with the maximum subcooling of less than 3.5 K at 0.5 wt% and 5.1 K at 1.0 wt%, respectively.  相似文献   

15.
Sassolas A  Catanante G  Fournier D  Marty JL 《Talanta》2011,85(5):2498-2503
A colorimetric protein phosphatase (PP) inhibition test for the detection of microcystin-LR (MC-LR) has been developed. Three PP2As, one recombinant and two natural versions, as well as one PP1 produced by molecular engineering, were tested. First, assays were performed using the enzymes in solution to compare their sensitivity to MC-LR. The PP2A purchased from ZEU Immunotec and PP1 appeared more sensitive to the toxin than the other enzymes. With PP2A from ZEU Immunotec, the colorimetric test showed a detection limit of 0.0039 μg L−1 and an IC50 value of 0.21 μg L−1. With PP1, the assay gave a detection limit of 0.05 μg L−1 and an IC50 value of 0.56 μg L−1. Therefore, this assay allowed the detection of lower microcystin-LR (MC-LR) concentrations than the maximum level (1 μg L−1) recommended by the World Health Organisation (WHO).The main drawback of this PP-based approach in solution is poor enzyme stabilisation. To overcome this problem, enzymes were entrapped within either a photopolymer or an agarose gel. PP2A from ZEU Immunotec and PP1 were immobilised at the bottom of microwells. The agarose-based tests performed better than the photopolymer-based assay for all of the enzymes. Therefore, the agarose gel is a good candidate to replace the photopolymer, which is generally used in PP-immobilising membranes. The assays based on enzyme-entrapping agarose gels showed detection limits equal to 0.17 μg L−1 and 0.29 μg L−1 with immobilised PP2A from ZEU and PP1, respectively. In view of these performances, these tests can potentially be used for monitoring water quality.  相似文献   

16.
Crosslinked macroporous polymer particles containing a single large hole in their surfaces were prepared by solution crosslinking of butyl rubber (PIB) in benzene using sulfur monochloride (S2Cl2) as a crosslinking agent. The reactions were carried out within the droplets of frozen solutions of PIB and S2Cl2 at −18 °C. Spherical millimeter-sized organogel beads with a polydispersity of less than 10% were obtained. The particles display a two phase morphology indicating that both cryogelation and reaction-induced phase separation mechanisms are operative during the formation of the porous structures. The beads exhibit moduli of elasticity of 1-4 kPa, much larger than the moduli of conventional nonporous organogel beads formed at 20 °C. The gel particles also exhibit fast responsivity against the external stimulus (solvent change) due to their large pore volumes (4-7 ml/g). The gel beads prepared at −18 °C are very tough and can be compressed up to about 100% strain during which almost all the solvent content of the particles is released without any crack development. The sorption-squeezing cycles of the beads show that they can be used in separation processes in which the separated compounds can easily be recovered by compression of the beads under a piston.  相似文献   

17.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

18.
The effect of migration of calcium carbonate (CaCO3) nanoparticles on the breakup dynamics of Ethylene-Propylene-Diene Monomer (EPDM) droplets in Polypropylene (PP) matrix during melt extrusion was investigated in situ. The breakup process of EPDM droplets was sped up dramatically when the migration of CaCO3 nano-particles from dispersed phase to matrix was introduced to PP/EPDM melts. It was found that both the total breakup time and the shape stability of slender EPDM droplets decreased with the increase of CaCO3 concentration. Both the maximum value in equivalent diameter d and aspect ratio AR of EPDM droplets were also reduced by increasing the composition of CaCO3 nanoparticles. Results were discussed in consideration of interfacial tension and migration of CaCO3 nanoparticles. Reduction in interfacial tension is mainly responsible for the improved breakup process in the two-step composites with CaCO3 nanoparticles (<2 wt%). Higher composition of CaCO3 (≥2 wt%) induced the CaCO3 aggregates in the EPDM phase. These aggregates acted as stress concentration when the EPDM droplets break up.  相似文献   

19.
Germania-based sol–gel organic–inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol–gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol–gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol–gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol–gel germania organic–inorganic hybrid coating and the samples (Kcs) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the Kcs values ranged from 8.1 × 101 to 5.6 × 104. Also, for the first time, the stability of the sol–gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol–gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 °C) with little change in extraction capabilities. This demonstrates that sol–gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol–gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30–40 to 10–15 min) to reach equilibrium between the sol–gel germania triblock polymer coating and the analytes in the sample solution.  相似文献   

20.
The DNA binding fusion protein, LacI–His6–GFP, together with the conjugate PEG–IDA–Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600–DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG–IDA–Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG–dextran system as a second extraction system, with 80–90% of pDNA partitioning to the bottom phase. This represents about 7.4 μg of pDNA extracted per 1 mL of pUC19 desalted lysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号