首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate temperature rises of over 200 °C have been observed for growth of InN and In-rich InGaN on GaAs substrates. We present a model to show that it is not the narrow bandgap that is responsible for the large temperature rises observed during growth of InN, but the large bulk background carrier concentration. We also show how the substrate temperature rise during growth increases as a function of increasing indium composition and the effects of controlling the substrate temperature on film quality.  相似文献   

2.
The nanostructures and magnetic properties of Ge1−xMnx thin films grown on Si substrates by molecular beam epitaxy, with different nominal Mn concentrations (1−4%) and different growth temperatures, have been systematically investigated by transmission electron microscopy and superconducting quantum interference device. It was discovered that when Ge1−xMnx thin films were grown at 70 °C, with increase in Mn concentration, Mn-rich tadpole shaped clusters started to nucleate at 1% Mn and become dominate in the entire film at 4% Mn. While for the thin films grown at 150 °C, tadpoles was firstly seen in the film with 1% Mn and subsequently Mn-rich secondary precipitates became dominant. The magnetic properties show specific features, which are mainly related to the nature and amount of Mn-rich clusters/precipitates within these thin films.  相似文献   

3.
The influence of Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition (MOCVD) has been systematically studied. Compared with the sample without Al pre-deposition, optimum Al pre-deposition time could improve the AlN buffer layer crystal quality and reduce the root mean square (RMS) roughness. Whereas, overlong Al-deposition time deteriorated the AlN crystal quality and Al-deposition patterns could be found. Cracks and melt-back etching patterns appeared in the GaN layer grown without Al pre-deposition. With suitable Al-deposition time, crack-free 2.0 μm GaN was obtained and the full-width at half-maximum (FWHM) of (0 0 2) plane measured by double crystal X-ray diffraction (DCXRD) was as low as 482 arcsec. However, overlong Al-deposition time would result in a great deal of cracks, and the crystal quality of GaN layer deteriorated. The surface of GaN layer became rough in the region where the Al-deposition patterns were formed due to overlong Al-deposition time.  相似文献   

4.
GaN films were grown on cc-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE) with a pulsed flow of HCl over Ga metal. NH3NH3 gas supply was controlled to flow in a constant rate or in a modulated way. The surface morphology dependence of these films on the various flow modulation schemes was investigated. Depending on the duty cycle of NH3NH3 flow, the surface morphology of GaN films was sensitively modified. This sensitive response of surface morphology of GaN films to the flow modulation was attributed to diffusion efficiency variation of Ga species under different gas environment. Under proper modulation conditions, flattened top-surface morphology of nucleated domains was found to be obtained.  相似文献   

5.
6.
This paper reports high-temperature (305–523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu2−xSe) and copper (II) selenide (Cu3Se2) thin films. Cu2−xSe and Cu3Se2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu2−xSe and Cu3Se2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.  相似文献   

7.
Variation of the chemical composition of ternary CdS1−xSex nanocrystals grown in borosilicate glass depending on the thermal treatment is studied by resonant Raman spectroscopy. It is shown that only for the nanocrystals with roughly equal content of substitutive S and Se chalcogen atoms (0.4<x<0.6) the nanocrystal composition is independent of the thermal treatment parameters. In other cases an increase of the thermal treatment temperature (625–700 °C) and duration (2–12 h) results in a considerable increase of the predominant chalcogen content in the nanocrystals.  相似文献   

8.
Multi-layer InAs quantum wires were grown on, and embedded in In0.53Ga0.47−xAlxAs (with x=0, 0.1, 0.3 and 0.48) barrier/spacer layers lattice matched to an InP substrate. Correlated stacking of the quantum wire arrays were observed with aluminum content of 0 and 0.1. The quantum wire stacks became anti-correlated as the aluminum content was increased to 0.3 and 0.48. The origin of such stacking pattern variation was investigated by finite element calculations of the chemical potential distribution for indium on the growth front surface of the capping spacer layer. It is shown that the stacking pattern transition is determined by the combined effect of strain and surface morphology on the growth front of the spacer layers.  相似文献   

9.
High quality Zn1−xFexO thin films were deposited on α-sapphireα-sapphire substrates by RF magnetron sputtering. X-ray absorption fine structure measurements showed that the chemical valence of Fe ions in the films was a mixture of 2+ and 3+ states, and Fe ions substituted mainly for the Zn sites in the films. DC-magnetization measurements revealed ferromagnetic properties from 5 to 300 K. The photoluminescence measurements at 15 K showed a sharp main transition peak at 3.35 eV along with a broad impurity peak at 2.45 eV. The structural and magnetization analyses of the Zn1−xFexO films strongly suggested that the ferromagnetism was the intrinsic properties of the films.  相似文献   

10.
The main limitation in the application of hydride vapor phase epitaxy for the large scale production of thick free-standing GaN substrates is the so-called parasitic deposition, which limits the growth time and wafer thickness by blocking the gallium precursor inlet. By utilizing Cl2 instead of the usual HCl gas for the production of the gallium chlorine precursor, we found a rapid increase in growth rate from ∼80 to ∼400 μm/h for an equally large flow of 25 sccm. This allowed us to grow, without any additional optimization, 1.2 mm thick high quality GaN wafers, which spontaneously lifted off from their 0.3° mis-oriented GaN on sapphire HCl-based HVPE templates. These layers exhibited clear transparencies, indicating a high purity, dislocation densities in the order of 106 cm−2, and narrow rocking curve XRD FWHMs of 54 and 166 arcsec in for the 0002 and 101−5 directions, respectively.  相似文献   

11.
We have investigated the growth of magnesium-doped GaP (GaP:Mg) layers on GaN by metalorganic chemical vapor deposition. The hole carrier concentration increased linearly from 0.8×1018 to 4.2×1018 cm−3 as the Bis(cyclopentadienyl) magnesium (Cp2Mg) mole flow rate increased from 1.2×10−7 to 3.6×10−7 mol/min. However, the hole carrier concentration decreased when the CP2Mg mole flow rate was further increased. The double crystal X-ray diffraction (DCXRD) rocking curves showed that the GaP:Mg layers were single crystalline at low CP2Mg molar flow. However, the GaP:Mg layers became polycrystalline if the CP2Mg molar flow was too high. The decrease in hole carrier concentration at high CP2Mg molar flow was due to crystal quality deterioration of the GaP layer, which also resulted in the low hole mobility of the GaP:Mg layer.  相似文献   

12.
The dislocation structure at the initial stage of relaxation of GexSi1−x films (x∼0.4–0.8) grown on Si (0 0 1) substrates tilted at 6° to the nearest (1 1 1) plane is studied. The use of Si substrates tilted away from the exact (0 0 1) orientation for epitaxial growth of GexSi1−x films (x≥0.4) allowed finding the basic mechanism of formation of edge dislocations that eliminate the mismatch stresses. Though the edge dislocations are defined as sessile dislocations, they are formed in accordance with the slipping mechanism proposed previously by Kvam et al. (1990). It is highly probable that a 60° misfit dislocation (MD) propagating by the slipping mechanism provokes the nucleation of a complementary 60° MD slipping in a mirror-like tilted plane (1 1 1). The reaction between these dislocations leads to the formation of an edge MD that ensures more effective reconciliation of the discrepancy. Comparative estimation of the slip velocities of the primary and induced 60° MDs and also of the resultant 90° MD is fulfilled. The slip velocity of the induced 60° MD is appreciably greater than the velocity of the primary 60° MD. Therefore, the induced MD “catches up” with the second front of the primary MD, thus forming a 90° MD propagating to both sides due to slipping of the 60° MDs forming it. The propagation velocity of the 90° MD is also greater than the slip velocity of a single 60° MD. For these reasons, 90° MDs under certain conditions that favor their formation and propagation can become the main defects responsible for plastic relaxation of GeSi films close to Ge in terms of their composition.  相似文献   

13.
A series of 100-oriented ScN films was grown under N-rich conditions on 100-oriented Si using different Sc fluxes. The ScN films grew in an epitaxial cube-on-cube orientation, with [0 0 1]ScN//[0 0 1]Si and [1 0 0]ScN//[1 0 0]Si, despite the high (11%) lattice mismatch between ScN and Si. The film grain size increases and the film ω-FWHM decreases with increasing Sc flux, but the film roughness increases. Films grown under similar conditions on 111-oriented Si resulted in mixed 111 and 100 orientations, indicating that the 100 orientation is favoured both due to texture inheritance from the substrate and due to the growth conditions used.  相似文献   

14.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

15.
MOVPE growth of InN on sapphire substrates is compared using two different designs of horizontal reactor. The major difference between the two designs is a variation in the reactant-gas flow-spacing between the substrate and the ceiling of the quartz chamber: 33 mm for the Type A reactor and 14 mm for Type B. Compared with the Type A reactor, the Type B reactor brings about InN films with a larger grain size. This is especially true when InN is grown at 600°C using the Type B reactor, in which case the two-dimensional (2D) growth of InN is found to be extremely enhanced. An investigation of the NH3/TMIn molar ratio dependence of the surface morphology of grown InN films using the two reactors suggests that the enhanced 2D growth is attributed to the decrease in the effective NH3/TMIn ratio in the growth atmosphere. Even using the Type A reactor, a film with enhanced 2D growth can be obtained when the NH3/TMIn ratio is considerably low (1.8×104). The enhanced 2D growth results in a smaller XRC-FWHM (full-width at half maximum of the X-ray rocking curve) (1500 arcsec), than that for a 3D-grown film (5000 arcsec).  相似文献   

16.
The effect of surface preparation on CdZnTe properties was investigated. Surface etching using bromine solutions enhances Te elemental composition, resulting in a Te rich surface layer that is prone to oxidize. This oxidation degrades the performance of the fabricated CZT gamma detector. Roughness results were identical for samples polished with 1 and 3 μm and subsequently etched in 2% Br-MeOH. The optimal concentration of etching was 2% Br-MeOH.  相似文献   

17.
18.
The formation of ordered InAs/InP quantum dot (QD) arrays is demonstrated on patterned InP (1 0 0) and (3 1 1)B substrates by the concept of self-organized anisotropic strain engineering in chemical beam epitaxy (CBE). On shallow- and deep stripe-patterned InP (1 0 0) substrates, depending on the stripe orientation, the linear one-dimensional InAs QD arrays are rotated away from their natural direction due to the presence of vicinal stepped sidewall planes modifying the self-organization process, coexisting with QD free steep side facets on the deep-patterned substrates. On shallow- and deep-patterned InP (3 1 1)B substrates only QD free side facets form with flat top and bottom areas, not affecting the natural ordering of the two-dimensional InAs QD arrays. On the deep-patterned substrates a row of dense QDs forms on top along the side facets due to their slow-growing behavior. The optical properties of the QD arrays on the patterned substrates are not degraded compared to those of arrays formed on planar substrates for both InP (1 0 0) and (3 1 1)B substrates showing the potential of self-organized anisotropic strain engineering combined with step engineering for the creation of advanced complex QD arrays and networks.  相似文献   

19.
Epitaxial AlN films have been grown on SiC substrate by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE) using radio frequency (RF) plasma-excited nitrogen. In the RF-MBE growth, the growth rates have been found to be almost constant and the crystal quality improved with increasing the substrate temperature up to 850°C. Further increases of substrate temperature decreased the growth rate and degraded the crystal quality. Using the optimum substrate temperature of 850°C and optimizing the shutter open time, smooth AlN films with atomic force microscope roughness as low as 0.2 nm have been grown by RF-MEE growth.  相似文献   

20.
Optical and structural properties of tensile strained graded GaxIn1−xP buffers grown on GaAs substrate have been studied by photoluminescence, X-ray diffraction, atomic force microscopy, and scanning electron microscopy measurements. The Ga composition in the graded buffer layers was varied from x=0.51 (lattice matched to GaAs) to x=0.66 (1% lattice mismatch to GaAs). The optimal growth temperature for the graded buffer layer was found to be about 80–100 °C lower than that for the lattice matched GaInP growth. The photoluminescence intensity and surface smoothness of the Ga0.66In0.34P layer grown on top of the graded buffer were strongly enhanced by temperature optimization. The relaxation of tensile GaInP was found to be highly anisotropic. A 1.5 μm thick graded buffer led to a 92% average relaxation and a room temperature photoluminescence peak wavelength of 596 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号