共查询到20条相似文献,搜索用时 15 毫秒
1.
A.S. Segal A.V. Kondratyev S.Yu. Karpov D. Martin V. Wagner M. Ilegems 《Journal of Crystal Growth》2004,270(3-4):384-395
A simple quasi-thermodynamic model of surface chemistry in GaN hydride vapor phase epitaxy (HVPE) is presented. The model is coupled with the detailed 3D simulations of species transport in a horizontal-tube reactor and validated by the comparison with the data on the GaN growth rate obtained by laser reflectometry. Parametric study of the growth rate as a function of temperature and species flow rates has been performed over a wide range of growth conditions. The important role of species transport in an HVPE reactor is demonstrated. In particular, a strong effect of the natural concentration convection resulting in the formation of recirculation zones and in a non-uniform vapor composition is revealed by modeling. The impact of these effects on the GaN growth rate and V/III ratio on the growth surface is discussed in detail. 相似文献
2.
Yuichi Oshima Takehiro YoshidaKazutoshi Watanabe Tomoyoshi Mishima 《Journal of Crystal Growth》2010,312(24):3569-3573
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range. 相似文献
3.
Si-Young Kim Hyun-Jae Lee Seung-Hwan Park Woong Lee Mi-Na Jung Katsushi Fujii Takenari Goto Takashi Sekiguchi Jiho Chang Gyungsuk Kil Takafumi Yao 《Journal of Crystal Growth》2010,312(14):2150-2153
A new hydride vapor phase epitaxy (HVPE)-based approach for the fabrication of freestanding GaN (FS-GaN) substrates was investigated. For the direct formation of low-temperature GaN (LT-GaN) layers, the growth parameters were optimized: the polarity of ZnO, the growth temperature, and the V/III ratio. The FS-GaN layer was achieved by gas etching in an HVPE reactor. A fingerprint of Zn out-diffusion was detected in the photoluminescence measurements, especially for the thin (80 μm) FS-GaN film; however, a thicker film (400 μm) was effectively reduced by optimization of GaN growth. 相似文献
4.
5.
Superlattices of cubic gallium nitride (GaN) and gallium arsenide (GaAs) were grown on GaAs(1 0 0) substrates using metalorganic vapor phase epitaxy (MOVPE) with dimethylhydrazine (DMHy) as nitrogen source. Structures grown at low temperatures with varying layer thicknesses were characterized using high resolution X-ray diffraction and atomic force microscopy. Several growth modes of GaAs on GaN were observed: step-edge, layer-by-layer 2D, and 3D island growth. A two-temperature growth process was found to yield good crystal quality and atomically flat surfaces. The results suggest that MOVPE-grown thin GaN layers may be applicable to novel GaAs heterostructure devices. 相似文献
6.
Youngji Cho Jun-Seok Ha Mina Jung Hyun-Jae Lee Seunghwan Park Jinsub Park Katsushi Fujii Ryuichi Toba Samnyung Yi Gyung-Suk Kil Jiho Chang Takafumi Yao 《Journal of Crystal Growth》2010,312(10):1693-1696
The present study focused on the effect of an intermediate-temperature (IT; ∼900 °C) buffer layer on GaN films, grown on an AlN/sapphire template by hydride vapor phase epitaxy (HVPE). In this paper, the surface morphology, structural quality, residual strain, and luminescence properties are discussed in terms of the effect of the buffer layer. The GaN film with an IT-buffer revealed a relatively lower screw-dislocation density (3.29×107 cm−2) and a higher edge-dislocation density (8.157×109 cm−2) than the GaN film without an IT-buffer. Moreover, the IT-buffer reduced the residual strain and improved the luminescence. We found that the IT-buffer played an important role in the reduction of residual strain and screw-dislocation density in the overgrown layer through the generation of edge-type dislocations and the spontaneous treatment of the threading dislocation by interrupting the growth and increasing the temperature. 相似文献
7.
Chengxin Wang Hinyiu Anthony Chung Matthias Seyboth Markus Kamp Karl Joachim Ebeling Rainer Beccard Michael Heuken 《Journal of Crystal Growth》2001,230(3-4):377-380
Using hydride vapor phase epitaxy the influence of growth parameters on the crack density is studied for thick epitaxially lateral overgrown (ELOG) GaN layers. Reactor pressure, growth rate, and substrate temperature are key factors to obtain crack-free thick GaN layers. The cracking mechanism is discussed and void formation on top of the SiO2 stripes is proposed to play a key role in stress relaxation and crack suppression. 相似文献
8.
Sanghwa Lee Taegeon Oh Boa Shin Chinkyo Kim Dong Ryeol Lee Hyun-Hwi Lee 《Journal of Crystal Growth》2010,312(14):2038-2043
GaN nanorods were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy, and the crystallographic characteristics associated with their preferred growth directions were investigated by utilizing synchrotron X-ray reciprocal space mapping in a grazing incidence geometry and scanning electron microscopy. Crystallographic analysis reveals that the nanorods containing both wurtzite and zinc blende phase tend to have narrower distribution of the preferred growth directions than those containing only wurtzite phase. This tendency is partly attributed to the subtle interplay between polytypism and the preferred growth directions of GaN nanorods. 相似文献
9.
Shigeyasu Tanaka Yoshio Honda Norifumi Kameshiro Ryuta Iwasaki Nobuhiko Sawaki Takayoshi Tanji Mikio Ichihashi 《Journal of Crystal Growth》2004,260(3-4):360-365
We have investigated the morphology of the high-temperature-grown AlN nucleation layer and its role in the early stage of GaN growth, by means of transmission electron microscopy. The nitride was selectively grown on a 7-degree off-oriented (0 0 1) patterned Si substrate by metalorganic vapor phase epitaxy. AlN was deposited on the inclined unmasked (1 1 1) facet in the form of islands. The size of the islands varied along the slope, which is attributable to the diffusion of the growth species in the vapor phase. The GaN nucleation occurred at the region where rounded AlN islands formed densely. The threading dislocations were observed to generate in the GaN nucleated region. 相似文献
10.
E. Aujol A. Trassoudaine L. Siozade A. Pimpinelli R. Cadoret 《Journal of Crystal Growth》2001,230(3-4):372-376
This study presents the influence of the composition of the carrier gas on the growth of GaN by HVPE. Since no hydrogen is introduced in the vapour phase, the deposition is expected to be controlled by Cl desorption in the form of GaCl3, as has been proposed for GaAs. However, our published model predicts much lower growth rates than those observed. We can account for both the observed parasitic deposition and GaN growth rate if we assume that GaCl3 is not at its equilibrium pressure in the deposition zone and where nucleation takes place on the walls as well as on the substrate. This yields a high rate of parasitic nucleation even though the nominal supersaturation is vanishing small. Very little growth takes place on the substrate where the equilibrium pressure of GaCl3 is reached. We describe similar experiments performed with a H2/N2 mixture as the carrier gas. In this case, we expect GaN deposition to be controlled by desorption of Cl as HCl, which is known as the H2 mechanism. It is speculated that the results show the existence of a new growth mechanism. 相似文献
11.
GaN films were grown on c-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE) with a pulsed flow of HCl over Ga metal. NH3 gas supply was controlled to flow in a constant rate or in a modulated way. The surface morphology dependence of these films on the various flow modulation schemes was investigated. Depending on the duty cycle of NH3 flow, the surface morphology of GaN films was sensitively modified. This sensitive response of surface morphology of GaN films to the flow modulation was attributed to diffusion efficiency variation of Ga species under different gas environment. Under proper modulation conditions, flattened top-surface morphology of nucleated domains was found to be obtained. 相似文献
12.
Tim Bohnen Hina AshrafGerbe W.G. van Dreumel Sjoerd VerhagenJan L. Weyher Paul R. HagemanElias Vlieg 《Journal of Crystal Growth》2010,312(18):2542-2550
The main limitation in the application of hydride vapor phase epitaxy for the large scale production of thick free-standing GaN substrates is the so-called parasitic deposition, which limits the growth time and wafer thickness by blocking the gallium precursor inlet. By utilizing Cl2 instead of the usual HCl gas for the production of the gallium chlorine precursor, we found a rapid increase in growth rate from ∼80 to ∼400 μm/h for an equally large flow of 25 sccm. This allowed us to grow, without any additional optimization, 1.2 mm thick high quality GaN wafers, which spontaneously lifted off from their 0.3° mis-oriented GaN on sapphire HCl-based HVPE templates. These layers exhibited clear transparencies, indicating a high purity, dislocation densities in the order of 106 cm−2, and narrow rocking curve XRD FWHMs of 54 and 166 arcsec in for the 0002 and 101−5 directions, respectively. 相似文献
13.
J.L. Weyher B. łucznik I. Grzegory J. Smalc-Koziorowska T. Paskova 《Journal of Crystal Growth》2010,312(18):2611-2615
In this communication we will summarize the results of a complementary study of structural and chemical non-homogeneities that are present in thick HVPE-grown GaN layers. It will be shown that complex extended defects are formed during HVPE growth, and are clearly visible after photo-etching on both Ga-polar surface and on any non-polar cleavage or section planes. Large chemical (electrically active) defects, such as growth striations, overgrown or empty pits (pinholes) and clustered irregular inclusions, are accompanied by non-uniform distribution of crystallographic defects (dislocations). Possible reasons of formation of these complex structures are discussed. The nature of defects revealed by selective etching was subsequently confirmed using TEM, orthodox etching and compared with the CL method. The non-homogeneities were studied in GaN crystals grown in different laboratories showing markedly different morphological characteristics. 相似文献
14.
Y. Kagamitani T. Kuribayashi K. Hazu T. Onuma D. Tomida R. Simura S.F. Chichibu K. Sugiyama C. Yokoyama T. Ishiguro T. Fukuda 《Journal of Crystal Growth》2010,312(22):3384-3387
Purely wurtzite phase needle crystals and epitaxial layers of GaN were grown by the ammonothermal method using an NH4I mineralizer. The inclusion of zincblende phase GaN was effectively eliminated by increasing the growth temperature higher than 500 °C. Accordingly, an approximately 20-μm-thick GaN epitaxial layer was achieved on the Ga-polar face of a c-plane GaN seed wafer at 520 °C. Although the characteristic deep state emission band dominated the room temperature photoluminescence spectrum, the near-band-edge emission of GaN was observed for both the needle crystals and the epitaxial layers. These results encourage one to grow better quality GaN crystals at a high growth rate under high-temperature growth conditions. 相似文献
15.
Maurizio Marco Alessandro 《Progress in Crystal Growth and Characterization of Materials》2003,47(2-3):239-270
Epitaxial deposition of thin or thick solid films is one of the most important growth processes in opto- and micro-electronic device production. The performance of growth apparatuses depend strongly on the physical and chemical aspects involved in the deposition process, such as the fluid dynamic features and the deposition chemistry. These phenomena can be well described through a macroscale modeling approach based on fundamental conservation equations. These models can be successfully adopted to optimize existing processes and to design new reactors where the “flat area” matching industrial needs is always increasing in time. Here, a macroscale model for deposition reactors has been derived highlighting the hypotheses necessary to fit the general conservation equations for these systems. Moreover, attention has been placed on the estimation of the necessary physical and chemical parameters. Macroscale aspects have been addressed with particular emphasis on the role of fluid flow within the reactor to reveal desired or undesired flow paths and their effect on process performance parameters. In particular, horizontal, vertical and barrel reactor types have been examined. 相似文献
16.
Kuei-Ming Chen Yen-Hsien Yeh Yin-Hao Wu Chen-Hao Chiang Din-Ru Yang Chu-Li Chao Tung-Wei Chi Yen-Hsang Fang Jenq-Dar Tsay Wei-I Lee 《Journal of Crystal Growth》2010,312(24):3574-3578
The bowing curvature of the free-standing GaN substrate significantly decreased almost linearly from 0.67 to 0.056 m−1 (i.e. the bowing radius increased from 1.5 to 17.8 m) with increase in inductively coupled plasma (ICP) etching time at the N-polar face, and eventually changed the bowing direction from convex to concave. Furthermore, the influences of the bowing curvature on the measured full width at half maximum (FWHM) of high-resolution X-ray diffraction (HRXRD) in (0 0 2) reflection were also deduced, which reduced from 176.8 to 88.8 arcsec with increase in ICP etching time. Decrease in the nonhomogeneous distribution of threading dislocations and point defects as well as VGa–ON complex defects on removing the GaN layer from N-polar face, which removed large amount of defects, was one of the reasons that improved the bowing of the free-standing GaN substrate. Another reason was the high aspect ratio of needle-like GaN that appeared at the N-polar face after ICP etching, which released the compressive strain of the free-standing GaN substrate. By doing so, crack-free and extremely flat free-standing GaN substrates with a bowing radius of 17.8 m could be obtained. 相似文献
17.
Twenty-five micrometer thick GaN was grown with hydride vapor phase epitaxy (HVPE) on metal-organic chemical vapor deposition (MOCVD) grown templates on sapphire substrates with the gallium treatment step (GTS) technique with varying buffer layer thickness. The samples are studied with atomic force microscopy (AFM), etching and scanning electron microscopy (SEM), photo-luminescence (PL), X-ray diffraction (XRD) and optical microscopy. The results show that the thickness of the buffer layer is not important for the layer quality once the growth in MOCVD starts to make the transition from 3D growth to 2D growth and HVPE continues in the same growth mode. We show that the MOCVD templates with GTS technique make excellent templates for HVPE growth, allowing growth of GaN without cracks in either sapphire or GaN. 相似文献
18.
Masanori Morishita Fumio Kawamura Minoru Kawahara Masashi Yoshimura Yusuke Mori Takatomo Sasaki 《Journal of Crystal Growth》2004,270(3-4):402-408
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown. 相似文献
19.
J.A. Freitas Jr. M.A. MastroE.A. Imhoff M.J. TadjerC.R. Eddy Jr. F.J. Kub 《Journal of Crystal Growth》2010,312(18):2616-2619
High voltage GaN Schottky diodes require a thick blocking layer with an exceptionally low carrier concentration. To this aim, a metal organic chemical vapor deposition process was developed to create a (14 μm) thick stress-free homoepitaxial GaN film. Low temperature photoluminescence measurements are consistent with low donor background and low concentration of deep compensating centers. Capacitance–voltage measurements performed at 30 °C verified a low level of about 2×1015 cm−3 of n-type free carriers (unintentional doping), which enabled a breakdown voltage of about 500 V. A secondary ion mass spectrometry depth profile confirms the low concentration of background impurities and X-ray diffraction extracted a low dislocation density in the film. These results indicate that thick GaN films can be deposited with free carrier concentrations sufficiently low to enable high voltage rectifiers for power switching applications. 相似文献
20.
Yohjiro Kawai Shinya OhsukaMotoaki Iwaya Satoshi KamiyamaHiroshi Amano Isamu Akasaki 《Journal of Crystal Growth》2009,311(10):2929-2932
We have demonstrated InxGa1−xN epitaxial growth with InN mole fractions of x=0.07 to 0.17 on an m-plane ZnO substrate by metalorganic vapor phase epitaxy for the first time. The crystalline quality of the epilayers was found to be much higher than that of epilayers grown on a GaN template on an m-plane SiC substrate. 相似文献