首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442–2467; Z.-L. Xu, Y.-J. Liu, C.-W. Shu, Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells, J. Comput. Phys. 228 (2009) 2194–2212] is applied to a piecewise quadratic spectral volume method on two-dimensional unstructured grids as a limiting procedure to prevent spurious oscillations in numerical solutions. The key features of this HR are that the reconstruction on each control volume only uses adjacent control volumes, which forms a compact stencil set, and there is no truncation of higher degree terms of the polynomial. We explore a WENO-type linear reconstruction on each hierarchical level for the reconstruction of high degree polynomials. Numerical computations for scalar and system of nonlinear hyperbolic equations are performed. We demonstrate that the hierarchical reconstruction can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.  相似文献   

2.
A residual-based (RB) scheme relies on the vanishing of residual at the steady-state to design a transient first-order dissipation, which becomes high-order at steady-state. Initially designed within a finite-difference framework for computations of compressible flows on structured grids, the RB schemes displayed good convergence, accuracy and shock-capturing properties which motivated their extension to unstructured grids using a finite volume (FV) method. A second-order formulation of the FV–RB scheme for compressible flows on general unstructured grids was presented in a previous paper. The present paper describes the derivation of a third-order FV–RB scheme and its application to hyperbolic model problems as well as subsonic, transonic and supersonic internal and external inviscid flows.  相似文献   

3.
Recently a new high-order formulation for 1D conservation laws was developed by Huynh using the idea of “flux reconstruction”. The formulation was capable of unifying several popular methods including the discontinuous Galerkin, staggered-grid multi-domain method, or the spectral difference/spectral volume methods into a single family. The extension of the method to quadrilateral and hexahedral elements is straightforward. In an attempt to extend the method to other element types such as triangular, tetrahedral or prismatic elements, the idea of “flux reconstruction” is generalized into a “lifting collocation penalty” approach. With a judicious selection of solution points and flux points, the approach can be made simple and efficient to implement for mixed grids. In addition, the formulation includes the discontinuous Galerkin, spectral volume and spectral difference methods as special cases. Several test problems are presented to demonstrate the capability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号