首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell’s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart–Thomas–Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart–Thomas–Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis.  相似文献   

2.
Molecular dynamics simulation was applied to study the structure and energy properties of β-HMX (β-cyclotetramethylene tetranitramine) crystal and its composite PBXs (polymer-bonded explosives) with F2311 as a polymer binder under different temperatures and F2311 concentrations. The interface interaction energy of HMX and F2311, the interaction energy EN–N between N atoms in N–NO2 trigger bond in HMX molecules, and the cohesive energy density (CED) are presented and analyzed. A meaningful finding is that there exists correlation between EN–N and the sensitivity of β-HMX and its composites, i.e. the less the EN–N is, the larger the sensitivity is. Additionally, molecular interactions are inherently disclosed by using pair correlation function (PCF) to analyze the interfacial structure between (1 0 0)HMX crystal surface and F2311 molecular chain.  相似文献   

3.
Recent work in the field of turbulence modelling has demonstrated the benefits of the wavelet-based multiresolution analysis technique as a tool for the formulation of the large-eddy simulation (LES) equations. In this formalism, the LES equations are obtained by projecting the Navier–Stokes equations onto a hierarchy of wavelet spaces. This paper investigates the use of biorthogonal interpolating wavelets as a basis for this projection, placing special emphasis on the wavelet-based differential operators that define this mapping. A detailed analysis of their convergence properties is presented and compared to those of their orthogonal counterpart, the Daubechies wavelets. Based on this study, we highlight the weaknesses of the unlifted interpolating wavelet representation for LES sub-grid modelling. Finally, we establish a link between the unlifted framework and the sampling-based LES approach recently proposed in the literature.  相似文献   

4.
We investigate solution properties of a class of evolutionary partial differential equations (PDEs) with viscous and inviscid regularization. An equation in this class of PDEs can be written as an evolution equation, involving only first-order spatial derivatives, coupled with the Helmholtz equation. A recently developed two-step iterative method (P.H. Chiu, L. Lee, T.W.H. Sheu, A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation, J. Comput. Phys. 228 (2009) 8034–8052) is employed to study this class of PDEs. The method is in principle superior for PDE’s in this class as it preserves their physical dispersive features. In particular, we focus on a Leray-type regularization (H.S. Bhat, R.C. Fetecau, A Hamiltonian regularization of the Burgers equation, J. Nonlinear Sci. 16 (2006) 615–638) of the Hopf equation proposed in alternative to the classical Burgers viscous term. We show that the regularization effects induced by the alternative model can be vastly different from those induced by Burgers viscosity depending on the smoothness of initial data in the limit of zero regularization. We validate our numerical scheme by comparison with a particle method which admits closed form solutions. Further effects of the interplay between the dispersive terms comprising the Leray-regularization are illustrated by solutions of equations in this class resulting from regularized Burgers equation by selective elimination of dispersive terms.  相似文献   

5.
An efficient second-order accurate finite-volume method is developed for a solution of the incompressible Navier–Stokes equations on complex multi-block structured curvilinear grids. Unlike in the finite-volume or finite-difference-based alternating-direction-implicit (ADI) methods, where factorization of the coordinate transformed governing equations is performed along generalized coordinate directions, in the proposed method, the discretized Cartesian form Navier–Stokes equations are factored along curvilinear grid lines. The new ADI finite-volume method is also extended for simulations on multi-block structured curvilinear grids with which complex geometries can be efficiently resolved. The numerical method is first developed for an unsteady convection–diffusion equation, then is extended for the incompressible Navier–Stokes equations. The order of accuracy and stability characteristics of the present method are analyzed in simulations of an unsteady convection–diffusion problem, decaying vortices, flow in a lid-driven cavity, flow over a circular cylinder, and turbulent flow through a planar channel. Numerical solutions predicted by the proposed ADI finite-volume method are found to be in good agreement with experimental and other numerical data, while the solutions are obtained at much lower computational cost than those required by other iterative methods without factorization. For a simulation on a grid with O(105) cells, the computational time required by the present ADI-based method for a solution of momentum equations is found to be less than 20% of that required by a method employing a biconjugate-gradient-stabilized scheme.  相似文献   

6.
A block-structured mesh large-eddy simulation (LES)/probability density function (PDF) simulator is developed within the OpenFOAM framework for computational modelling of complex turbulent reacting flows. The LES/PDF solver is a hybrid solution methodology consisting of (i) a finite-volume (FV) method for solving the filtered mass and momentum equations (LES solver), and (ii) a Lagrangian particle-based Monte Carlo algorithm (PDF solver) for solving the modelled transport equation of the filtered joint PDF of compositions. Both the LES and the PDF methods are developed and combined to form a hybrid LES/PDF simulator entirely within the OpenFOAM framework. The in situ adaptive tabulation method [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41–63; L. Lu, S.R. Lantz, Z. Ren, and B.S. Pope, Computationally efficient implementation of combustion chemistry in parallel PDF calculations, J. Comput. Phys. 228 (2009), pp. 5490–5525] is incorporated into the new LES/PDF solver for efficient computations of combustion chemistry with detailed reaction kinetics. The method is designed to utilise a block-structured mesh and can readily be extended to unstructured grids. The three-stage velocity interpolation method of Zhang and Haworth [A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156–193] is adapted to interpolate the LES velocity field onto particle locations accurately and to enforce the consistency between LES and PDF fields at the numerical solution level. The hybrid algorithm is fully parallelised using the conventional domain decomposition approach. A detailed examination of the effects of each stage and the overall performance of the velocity interpolation algorithm is performed. Accurate coupling of the LES and PDF solvers is demonstrated using the one-way coupling methodology. Then the fully two-way coupled LES/PDF solver is successfully applied to simulate the Sandia Flame-D, and a turbulent non-swirling premixed flame and a turbulent swirling stratified flame from the Cambridge turbulent stratified flame series [M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combust. Flame 159 (2012), pp. 2896–2911; M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combust. Flame 159 (2012), pp. 2912–2929]. It is found that the LES/PDF method is very robust and the results are in good agreement with the experimental data for both flames.  相似文献   

7.
We describe an algorithm for simulating reactive flows in porous media, in which the pore space is mapped explicitly. Chemical reactions at the solid–fluid boundaries lead to dissolution (or precipitation), which makes it necessary to track the movement of the solid–fluid interface during the course of the simulation. We have developed a robust algorithm for constructing a piecewise continuous (C1) surface, which enables a rapid remapping of the surface to the grid lines. The key components of the physics are the Navier–Stokes equations for fluid flow in the pore space, the convection–diffusion equation to describe the transport of chemical species, and rate equations to model the chemical kinetics at the solid surfaces. A lattice-Boltzmann model was used to simulate fluid flow in the pore space, with linear interpolation at the solid boundaries. A finite-difference scheme for the concentration field was developed, taking derivatives along the direction of the local fluid velocity. When the flow is not aligned with the grid this leads to much more accurate convective fluxes and surface concentrations than a standard Cartesian template. A robust algorithm for the surface reaction rates has been implemented, avoiding instabilities when the surface is close to a grid point. We report numerical tests of different aspects of the algorithm and assess the overall convergence of the method.  相似文献   

8.
We prove by an explicit construction that solutions to incompressible 3D Euler equations defined in the periodic cube Ω=[0,L]3 can be mapped bijectively to a new system of equations whose solutions are globally regular. We establish that the usual Beale-Kato-Majda criterion for finite-time singularity (or blowup) of a solution to the 3D Euler system is equivalent to a condition on the corresponding regular solution of the new system. In the hypothetical case of Euler finite-time singularity, we provide an explicit formula for the blowup time in terms of the regular solution of the new system. The new system is amenable to being integrated numerically using similar methods as in Euler equations. We propose a method to simulate numerically the new regular system and describe how to use this to draw robust and reliable conclusions on the finite-time singularity problem of Euler equations, based on the conservation of quantities directly related to energy and circulation. The method of mapping to a regular system can be extended to any fluid equation that admits a Beale-Kato-Majda type of theorem, e.g. 3D Navier-Stokes, 2D and 3D magnetohydrodynamics, and 1D inviscid Burgers. We discuss briefly the case of 2D ideal magnetohydrodynamics. In order to illustrate the usefulness of the mapping, we provide a thorough comparison of the analytical solution versus the numerical solution in the case of 1D inviscid Burgers equation.  相似文献   

9.
The filtered fluid dynamic equations are discretized in space by a high-order spectral difference (SD) method coupled with large eddy simulation (LES) approach. The subgrid-scale stress tensor is modelled by the wall-adapting local eddy-viscosity model (WALE). We solve the unsteady equations by advancing in time using a second-order backward difference formulae (BDF2) scheme. The nonlinear algebraic system arising from the time discretization is solved with the nonlinear lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm. In order to study the sensitivity of the method, first, the implicit solver is used to compute the two-dimensional (2D) laminar flow around a NACA0012 airfoil at Re = 5 × 105 with zero angle of attack. Afterwards, the accuracy and the reliability of the solver are tested by solving the 2D “turbulent” flow around a square cylinder at Re = 104 and Re =  2.2 × 104. The results show a good agreement with the experimental data and the reference solutions.  相似文献   

10.
We consider variational multiscale (VMS) methods with h-adaptive technique for the stationary incompressible Navier–Stokes equations. The natural combination of VMS with adaptive strategy retains the best features of both methods and overcomes many of their deficits. A reliable a posteriori projection error estimator is derived, which can be computed by two local Gauss integrations at the element level. Finally, some numerical tests are presented to illustrate the method’s efficiency.  相似文献   

11.
H KHEIRI  M R MOGHADDAM  V VAFAEI 《Pramana》2011,76(6):831-842
In this work, we present travelling wave solutions for the Burgers, Burgers–Huxley and modified Burgers–KdV equations. The (G′/G)-expansion method is used to determine travelling wave solutions of these sets of equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.  相似文献   

12.
The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. In this regard, the influences of grid resolution on the results of k-ε, k-ω, and large-eddy simulation (LES) turbulence models are investigated and compared with those of experimental measurements. A numerical pressure undershoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on both coarse and fine grid resolutions. In addition, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop has also been calculated at incidence angles between -20° and +8°. The minimum total pressure drop is obtained by k-ω and LES at design point.  相似文献   

13.
Large eddy simulation (LES) is applied to a pulverized coal jet flame ignited by a preheated gas flow. The simulation results are compared to experimental data obtained for the inlet stoichiometric ratios of 0.14, 0.22, and 0.36. An accurate and computationally inexpensive devolatilization model suitable for combustion simulation in LES is proposed and incorporated into the LES. The numerical results of gas temperature and coal burnout on the centerline show good agreement with the experimental data. Two kinds of lift-off heights are introduced to verify the combustion simulation. One is the height from the primary nozzle exit to the starting point of the growing flame region. The other is the height from the primary nozzle exit to the starting point of the continuous flame region. The calculated results of the two lift-off heights show good agreement with the experimental data. In contrast to LES, the standard kε model overestimates the lift-off heights because it calculates time-averaged temperature which does not contain information about local flame structure. The stoichiometric ratio in the gas phase at the starting point of the growing flame region is found to be independent of the inlet stoichiometric ratio in the range from 0.14 to 0.36.  相似文献   

14.
A new continuum traffic flow model is proposed based on an improved car-following model, which takes the driver?s forecast effect into consideration. The backward travel problem is overcome by our model and the neutral stability condition of the new model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves and the Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived to describe the traffic flow near the neutral stability line. The corresponding solution for traffic density wave is also derived. Finally, the numerical results show that our model can not only reproduce the evolution of small perturbation, but also improve the stability of traffic flow.  相似文献   

15.
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.  相似文献   

16.
Even if numerical simulation of the Burgers’ equation is well documented in the literature, a detailed literature survey indicates that gaps still exist for comparative discussion regarding the physical and mathematical significance of the Burgers’ equation. Recently, an increasing interest has been developed within the scientific community, for studying non-linear convective–diffusive partial differential equations partly due to the tremendous improvement in computational capacity. Burgers’ equation whose exact solution is well known, is one of the famous non-linear partial differential equations which is suitable for the analysis of various important areas. A brief historical review of not only the mathematical, but also the physical significance of the solution of Burgers’ equation is presented, emphasising current research strategies, and the challenges that remain regarding the accuracy, stability and convergence of various schemes are discussed. One of the objectives of this paper is to discuss the recent developments in mathematical modelling of Burgers’ equation and thus open doors for improvement. No claim is made that the content of the paper is new. However, it is a sincere effort to outline the physical and mathematical importance of Burgers’ equation in the most simplified ways. We throw some light on the plethora of challenges which need to be overcome in the research areas and give motivation for the next breakthrough to take place in a numerical simulation of ordinary / partial differential equations.  相似文献   

17.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   

18.
N-doped ZnO–SBA-15 materials (denoted as nN–xZnO–SBA-15, where n is number of urea treatments and x is the weight ratio of ZnO/(ZnO+SBA-15)) were successfully synthesized by a two-step procedure. First, xZnO–SBA-15 was prepared by impregnating SBA-15 with Zn(NO3)2, followed by calcinating at 550 °C. In the second step, xZnO–SBA-15 was modified n times by doping nitrogen with the assistance of urea. The resulting nN–xZnO–SBA-15 materials prepared with various numbers of urea treatments were characterized by XRD, TEM, SEM, EDS, N2 adsorption/desorption at 77 K, diffuse reflectance UV–vis, and XPS. The results show that the nN–xZnO–SBA-15 maintains its ordered hexagonal mesostructure and exhibits light absorbance in the visible region. The nN–xZnO–SBA-15 samples were investigated with the photodegradation of methylene blue under visible light, and exhibited significant photocatalytic activity. The kinetics of the reaction obeyed the Langmuir–Hinshelwood model.  相似文献   

19.
《Physics letters. A》1999,262(6):445-452
We study the Darboux and Laplace transformations for the Boiti–Leon–Pempinelli equations (BLP). These equations are the (1+2) generalization of the sinh-Gordon equation. In addition, the BLP equations reduce to the Burgers (and anti-Burgers) equation in a one-dimensional limit. Localized nonsingular solutions in both spatial dimensions and (anti) `blow-up' solutions are constructed. The Burgers equation's `dressing' procedure is suggested. This procedure allows us to construct such solutions of the BLP equations which are reduced to the solutions of the dissipative Burgers equations when t→∞. These solutions we call the BLP dissipative structures.  相似文献   

20.
Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re = Γ/ν, where Γ is the total circulation of the vortex and ν is the kinematic viscosity. The purpose of this paper is to show that Burgers vortices are asymptotically stable with respect to small three-dimensional perturbations, for all values of the Reynolds number. This general result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the fact that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developed in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if Re is large, a phenomenon that was indeed observed in numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号